Химия все лабы (lab5)

Посмотреть архив целиком

7



Лабораторная работа по химии.

«Свойства s-металлов. Жёсткость воды»


Цель работы – ознакомление со свойством воды — жесткостью, изучение основных методов определения жесткости и способов ее устранения, рассмотрение примеров расчетов.


Теоретическая часть.

Состав природных вод.

Вода – одно из наиболее важных и распространенных химических соединений на нашей планете. Она покрывает 80% поверхности Земли и содержится во многих ее объектах: входит в состав горных пород и минералов, присутствует в почве и атмосфере, содержится во всех живых организмах. Ее важность заключается в том, что она является регулятором климатических условий на земле и универсальным растворителем в процессах, происходящих как в живой, так и неживой природе. Хорошая растворяющая способность воды, обусловленная полярностью ее молекул, приводит к тому, что в природе она чаще всего встречается не в виде индивидуального химического соединения, а в виде сложной многокомпонентной системы, в состав которой входят минеральный вещества, газы, коллоидные и крупнодисперсные частицы, а также различные микроорганизмы. Растворенные в воде компоненты находятся друг с другом в равновесии, образуя комплексы различного состава.

Одержание или концентрация тех или иных компонентов в природной воде зависит от вида водоисточника, температуры, времени года и многих других факторов.

Природные водоемы, находящиеся вблизи промышленных центров, содержат еще и вещества, являющиеся результатом деятельности человека. Это выбросы шахт, заводов, фабрик. Большинство из них являются вредными веществами, делающими часто непригодными природные водоемы для жизнедеятельности человека.

Основными газами, содержащимися в природной воде, являются СО2, О2, СН, СО, Н2, N2. Следует отметить, что относительное содержание кислорода в воде выше, чем в воздухе.

Среди основных минеральных веществ, присутствующих в природной воде – гидрокарбонаты, сульфаты, хлориды кальция и магния. Их источником являются горные породы – известняки, доломиты, растворяющиеся в результате контакта с природной водой в ходе ее круговорота.

Наличие в воде растворенных веществ увеличивает температуру ее кипения и понижает температуру замерзания. Последнее используется широко в практике для предотвращения образования льда зимой: на дорогах рассыпают соль, понижая тем самым температуру замерзания воды.


Виды жесткости и единицы ее измерения.

Воду с растворенными в ней солями называют жесткой, а совокупность свойств такой воды – жесткостью. Жесткая вода образует накипь на стенках паровых котлов, отопительных приборов и бытовой металлической посуды. Она не пригодна для производства бумаги и крашения тканей, для приготовления пищи и напитков. В жесткой воде не пенится мыло, плохо развариваются овощи и мясо.

Согласно ГОСТ 6055 – 86 различают:

  • карбонатную жесткость – это совокупность свойств воды, обусловленных присутствием в ней гидрокарбонатов кальция, магния и железа. Часто этот вид жесткости называют временной или устранимой;

  • некарбонатную жесткость – совокупность свойств воды, обусловленных присутствием в ней сульфатов, хлоридов, силикатов, нитратов и фосфатов кальция, магния и железа. Этот вид жесткости также называют постоянной или неустранимой;

  • общую жесткость, складывающуюся из карбонатной и некарбонатной жесткости. Она равна сумме концентраций ионов Са2+, Mg2+, Fе2+.

Количественно жесткость воды в России выражают единицами жесткости. За единицу жесткости принимают жесткость воды в одном литре которой содержится один миллимоль (ммоль) эквивалент ионов Са2+ или Mg2+. Числовое значение жесткости, выраженное в ммоль/л, совпадает со значением в моль/м3. Одна единица жесткости соответствует массовой концентрации ионов Са2+, равной 20, 4 мг/л или ионов Mg2+, равной 12, 15 мг/л.

По величине жесткости различают воду:

  • очень мягкую < 1, 5 единиц (ммоль экв/л);

  • мягкую 1, 5 – 3 единиц;

  • среднюю 3, 6 – 6, 0 единиц

  • жесткую 6, 0 – 9, 0 единиц

  • очень жесткую > 9, 0 единиц.


Методы устранения и снижения жесткости воды.

Устранение или снижение жесткости воды называют умягчением. Его осуществляют различными методами.


Термическая обработка воды.

Сущность этого метода заключается в предварительном нагревании воды до 70 – 80о С или ее кипячении. Метод позволяет устранить только временную (карбонатную) жесткость, обусловленную наличием в воде хорошо растворимых гидрокарбонатов кальция, магния и железа. При этом катионы Са2+, Mg2+, Fe2+ осаждаются в виде нерастворимых соединений.

Распад гидрокарбонатов магния и железа, в отличии от гидрокарбоната кальция, протекает сложнее: он одновременно сопровождается процессами гидролитического разложения их карбонатов. Это объясняется тем, что карбонаты магния и железа, в отличие от карбоната кальция, более растворимы, чем их гидроксиды.

Если временная жесткость предварительно не была устранена, то вышеприведенные процессы протекают при нагревании воды в паровых котлах, системах водяного отопления и охлаждения, бытовой металлической посуде с образованием в них слоя накипи из нерастворимых соединений. Это снижает коэффициенты теплопередачи и ухудшает их теплотехнические характеристики. При этом происходит перерасход топлива и перегрев металлических поверхностей. Чем больше железа содержится в воде, тем более бурым является цвет накипи.

При термической обработке воды удается также снизить и содержание в ней растворимых газов, т. к. их растворимость с увеличением температуры падает.

Химическая обработка воды (реагентный метод)

Этот метод позволяет устранить как временную жесткость, так и постоянную. Сущность его заключается в обработке воды специальными реагентами, образующими ионами, вызывающими жесткость, малорастворимые соединения.

К числу таких реагентов относятся: сода Na2CO3, негашеная CaO и гашеная Ca(OH)2 извести, различные фосфаты натрия (Na3PO4, Na6P6O18) и др.

При обработке воды известью (гашеной или негашеной) происходит устранение ее временной жесткости и одновременное снижение ее щелочности. Процесс называется известкованием или декарбонизацией.

Обработка известью позволяет связать и растворенный в воде углекислый газ. Использование фосфатов натрия предпочтительнее, так как образующие фосфаты кальция, магния и железа менее растворимы, чем соответствующие их карбонаты и гидроксиды.

Для одновременного устранения карбонатной и некарбонатной жесткости широкое распространение в промышленности получил известково – содовый метод: обработка воды смесью СаО и Nа2СО3. Вода, умягченная этим способом, имеет остаточную жесткость равную 0, 5 – 0, 1 ммоль зкв/л. Он становится еще более эффективным, если его проводить при нагревании, сочетая достоинства химического и термического методов.


Ионообменный метод.

Это современный физико – химический метод, широко используемый в промышленности, особенно в гидрометаллургии. Использование его для умягчения и деминерализации воды позволяет не только уменьшить ее жесткость, но достичь ее глубокой очистки. Вода, подвергшаяся такой обработке, практически не содержит посторонних ионов: ни катионов, ни анионов. Метод основан на способности некоторых веществ, не растворимых в воде, стехиометрически обменивать свои ионы на ионы внешней среды (воды, растворов электролитов). Вещества, обладающие такими свойствами, называют ионообменниками (ионообменными сорбентами) или сокращенно ионитами. Большинство ионитов – твердые, ограниченно набухающие вещества, аморфной или кристаллической структуры. Они состоят из каркаса (матрицы) и закрепленных на нем иогенных (активных функциональных) или комплексообразующих групп. Эти группы диссоциируют, давая полионы (фиксированные ионы, ковалентно связанные с каркасом) и эквивалентное число подвижных противоионов, способных к обмену и компенсирующих своими зарядами заряды полионов.

По знаку заряду подвижных противоионов, т. е. по знаку заряду обменивающихся ионов, иониты делятся на катиониты, аниониты и амфолиты, по химической природе каркаса. Ионообменный метод. на неорганические, органические и минерально – органические.


Практическая часть.

Опыт 1.

Название эксперимента – Определение временной жесткости воды.

Ход эксперимента – Пипеткой на 100 мл отберем в две чистые плоскодонные конические колбы (на 250 мл) по 100 мл водопроводной воды.

В каждую из колб добавим по 3 капли раствора индикатора – метилового оранжевого (щелочной раствор имеет желтую окраску, а кислый – красную).

В бюретку на 50 мл нальем до приблизительного 0 значения 0, 1н раствор соляной кислоты и запишем точное значение начального положения уровня кислоты (по нижнему уровню мениска).

Поставим обе колбы на лист белой бумаги. Одну из них оставим в сторону, она будет служит контрольным образцом для сравнения цвета растворов.

Во вторую по каплям, при непрерывном вращательном перемешивании прильем из бюретки 0, 1 н раствора соляной кислоты до перехода окраски раствора от желтой до оранжево – красной и сравним с цветом раствора, находящимся в первой колбе.

В момент изменения окраски запишем значение положения уровня раствора кислоты (по нижнему краю мениска) в бюретке и вычислим израсходованный на титрование объем соляной кислоты.

Процесс титрования повторим еще 2 раза с новыми порциями воды. Результаты титрования не должны отличаться. Если такое произойдет, то эксперимент придется повторить.

Наблюдения – При добавлении метилового оранжевого индикатора в воду она становится желтой, а при добавлении потом туда соляной кислоты цвет меняется на красный.

Уравнение реакции: CaCO3 + 2HCl = CaCl2 + CO2 ↑ + H2O

Ca(HCO3)2 + 2HCl = CaCl2 + 2H2O + 2CO2

Проведение расчетов – Рассчитаем среднее значение объема кислоты, пошедшей на титрование, и по нему вычислим временную жесткость воды.

Vн = 0

VкHCL1 = 1, 12 мл

VкHCL2 = 1, 19 мл

VкHCL3= 1, 06 мл

VкHCL1 +VкHCL3 +VкHCL2 1, 12 + 1, 19 + 1, 06 3, 37

VсрHCL = —————————— = ————————— = ——— = 1, 123 мл

3 3 3


NHCl * VсрHCL 0, 1 * 1, 123

Нвр = —————— * 1000 = ——————— * 1000 = 1, 123 ммоль экв/л

VH2O 100

Вывод – По полученным данным о жесткости воды, можно утверждать, что вода очень мягкая, так как значение жесткости меньше 1, 5 единиц по ГОСТ.

Опыт 2.

Название эксперимента – Определение общей жесткости воды.

Ход эксперимента – В бюретке (на 50 мл) заполним 0, 05н трилона Б до примерно нулевого деления и запишем точное положение уровня по нижнему краю мениска. Пипеткой (на 100 мл) отберем в две чистые плоскодонные конические колбы (на 250 мл) по 100 мл водопроводной воды, добавим в них 5 мл буферного раствора и сухой соли эриохрома черного, и перемешаем.

Поставим обе колбы на лист белой бумаги, затем одну из колб будем использовать в качестве контрольного образца для сравнения цвета растворов.

Во вторую, по каплям, при непрерывном вращательном перемешивании прильем из бюретки 0, 05 раствора трилона Б до перехода окраски от одной капли из винно – красной в фиолетовую.

Подождем 1 – 2 минуты, перемешивая раствор. Если окраска не стала сине – голубой с зеленоватым оттенком, доведем ее до этого цвета, добавив еще несколько капель раствора трилона Б из бюретки.

Сравним цвет рабочего раствора с окраской контрольного раствора в первой колбе.

В момент изменения окраски запишем положение уровня раствора трилона Б в бюретки по нижнему мениску и вычислим израсходованный на титрование объем трилона Б.

Процесс титрования повторим еще 2 раза с новыми порциями воды. Результаты титрования не должны отличаться друг от друга. Если все же отличаются, опыт придется повторить.

Наблюдения – При добавлении эриохрома черного в раствор, цвет раствора становится розоватым. А при добавлении туда избытка раствора трилона Б цвет меняется на сине – голубой.

Уравнение реакции.

Проведение расчетов – Рассчитаем среднее из близких результатов значение объема трилона Б, пошедшего на титрование, и по нему вычислим общую жесткость воды.

Vн = 0

VктрилонаБ1 = 2, 68 мл

VктрилонаБ2 = 2, 74 мл

VктрилонаБ3 = 2, 61 мл


VктрилонаБ1 + VктрилонаБ2 + VктрилонаБ3 2, 68 + 2, 74 + 2, 62

VсртрилонаБ = ——————————————— = ————————— = 2, 68мл

3 3


Nт * VсртрилонаБ 0, 05 * 2, 68

Нобщ = ———————— * 1000 = —————— * 1000 = 1, 34 ммоль экв/л

VH2O 100

Вывод – По полученному значению жесткости можно сделать вывод, что вода очень мягкая, так как значение жесткости меньше 1, 5 единиц по ГОСТ.


Опыт 3.

Название эксперимента – Устранение некарбонатной жесткости.

Ход эксперимента – В чистую пробирку с помощью пипетки (на 5 мл) отмерим 5 мл раствора MgSO4 . Добавим к нему 1 каплю 0, 2 н раствора Na2CO3 . При образовании осадка, перемешаем до его растворения.

Добавлять раствор Na2CO3 будем до тех пор, пока осадок перестанет растворяться.

То же самое проделаем с растворами CaCl2 и CaSO4.

Наблюдения и уравнения реакций.

Результаты наблюдений и уравнения реакций запишем в таблицу.



Состав

исходного

Вид осадителя

Уравнение реакции


Число

капель

Na2CO3


Характеристика

осадка


Вывод о раставоримости

осадка


MgSO4

Na2CO3


MgSO4 + Na2CO3 = Na2SO4 + MgCO3


2

Белый

Практически растворимый


CaCl2


Na2CO3


Na2CO3 + CaCl2 = CaCO3 ↓ + +2NaCl


4


Белый


Малорастворимый


CaSO4


Na2CO3


Na2CO3 + CaSO4 = Na2SO4 + +CaCO3


7


Белый


Малорастворимый


Случайные файлы

Файл
33204.rtf
90864.rtf
130187.rtf
66424.rtf
73344.rtf