Регулирующий клапан прямого действия (25099)

Посмотреть архив целиком

Содержание


Введение

Общие сведения

Регулирующий клапан с мембранным исполнительным механизмом РК-1

Назначение и принцип действия

Определение функциональной зависимости между входом и выходом

Расчет коэффициентов

Определение основных характеристик

Анализ элемента как системы

Список литературы


Введение


В САР для регулирования расхода применяют регуляторы расхода.

Основной деталью всякого гидроаппарата является запорно-регулирующий элемент. Конструктивно он может быть выполнен в виде крана, золотника или клапана.

По назначению всю гидроаппаратуру можно разделить на направляющую и регулирующую. Первая предназначена для изменения направления потока жидкости путем полного перекрытия (открытия) проходного сечения в аппарате, вторая — для изменения давления или расхода (а иногда и направления потока) жидкости путем частичного перекрытия проходного сечения в аппарате.

Регуляторы расхода объединяют устройства, предназначенные для управления расходом рабочей жидкости.

Если, например, к устройству подходит слишком большое количество жидкости, чем было определено при монтаже трубопровода, то под действием давления жидкости и других факторов срабатывает регулятор (регулятор открывается), пропуская только то количество жидкости, необходимое для нормальной работы системы. Если же к устройству подходит малое количество жидкости – давление уменьшается и регулятор закрывается до тех пор пока давление не увеличится и напор жидкости не возрастет.

Следовательно, регулятор обеспечивает контроль над тем количеством жидкости, которое проходит через сечение трубопровода.

К регуляторам прямого действия относят те, у которых перемещение регулирующего элемента осуществляется за счет энергии регулируемого объекта, т. е. применительно к гидроаппарату — за счет энергии рабочей жидкости. Как правило, регуляторы этого типа требуют небольшой мощности для управления регулирующим элементом.

Для исследования и анализа я выбрала регулирующий клапан прямого действия с мембранно-пневматическим исполнительным механизмом. Он прост в конструктивном отношении и является наиболее наглядным объектом для исследования.


Общие сведения


Автоматические регуляторы подразделяются на регуляторы прямого и непрямого действия.

Регуляторами прямою действия называются регуляторы, чувствительные элементы которых непосредственно развивают усилия, необходимые для перемещения регулирующих органов, не используя для своей работы подвода энергии извне. Регуляторы прямого действия применяются для автоматического регулирования температуры, давления, расхода и других параметров жидкостей и газов.

Регуляторы непрямого действия для перемещения своих регулирующих, органов используют энергию извне, и по виду этой энергии подразделяются на гидравлические, пневматические, электрические (включая электронные и комбинированные).



Регулирующий клапан с мембранным исполнительным механизмом РК-1


Назначение и принцип действия


Регулирующие клапаны с мембранным исполнительным механизмом РК-1 предназначены для работы с регулирующими приборами РД-ЗА при автоматизации объектов теплофикации и для регулирования параметром паровых или газовых сред. Они могут также применяться в качестве регуляторов прямого действия. Клапаны состоят из корпуса и мембранного исполнительного механизма.

Клапаны монтируют на горизонтальных участках трубопроводов при вертикальном расположении штока. При этом мембранный исполнительный механизм должен быть над клапаном. Соединительные линии из медных или стальных труб диаметром 8 — 10 мм при монтаже выполняют возможно короткими.

Общий вид клапана представлен на рисунке 1.


Рис. 1. Регулирующий клапан РК-1 (Dу = 150 ÷ 250 мм):

1 – корпус; 2 – золотник клапана нормально-открытой сборки; 3 – шток; 4 – сальник; 5 – регулировочная пружина; 6 – чаша гидропривода; 7 – мембрана; 8 – жесткий центр; 9 – золотник клапана нормально-закрытой сборки


Такой регулятор используют для поддержания давления до себя, после себя, а также для поддержания перепада расхода воды на абонентских вводах.

Достоинством регулятора является возможность сборки различных по назначению регуляторов прямого действия из унифицированных деталей. Кроме того, регулятор может быть использован в качестве регулирующего органа в регуляторах непрямого действия. Регулируемое давление устанавливается путем натяжения пружины, а также применения пружин различной жесткости. Разгрузка затвора (золотника) от давления воды до и после него достигается путем применения разгрузочного сильфона, эффективная площадь которого равна эффективной площади золотника.


Рис. 2. Схема вариантов сборки регулятора а – при поддержании давления «до себя»; б – при поддержании давления « после себя»; в – при поддержании перепада давлений


Сила, развиваемая мембраной исполнительного устройства под действием регулируемого давления или перепада давлений, уравновешивается усилием пружины. Регулятор может быть собран по схеме «нормально открыт» и «нормально закрыт».

Схемы вариантов сборки регулятора приведены на рис. 2 /6, c. 83/.

При регулировании давления р01 перед регулятором /рис. 2,а/ импульсная линия 6 соединяет точку регулируемого давления с подмембранной зоной. Клапан 1 устанавливается сверху (со стороны сильфона 3). При отсутствии движения воды в трубопроводе регулирующий клапан 1 под действием пружины 4 будет находиться в закрытом состоянии («нормально закрыт»). При движении воды давление р01 до регулятора выше давления р02 после регулятора. Сильфон 3 разгружает клапан 1 от давления р02. Давление р01, действуя на клапан снизу, создает усилие, поднимающее клапан, этому противодействует усилие растянутой пружины 4. Кроме того, сверху на клапан через шток 7 действует усилие, создаваемое мембраной 5. Если давление до регулятора становится ниже установленной величины, то мембрана 5 опускается вниз, прижимая клапан 1 к седлу 2, уменьшая сток до тех пор, пока не восстановится равновесие сил. При увеличении давления до регулятора мембрана 5 поднимается вверх, усилие, создаваемое мембраной, становится больше силы упругости пружины и клапан с помощью штока 7 поднимается вверх, увеличивая сток воды. Давление р01 снижается до заданной величины.

При поддержании давления после регулятора /рис. 2,б/ импульсная трубка 6 соединяет точку регулируемого давления с нижней камерой мембраны 5, а клапан 1 устанавливается снизу (со стороны пружины 4). У собранного таким образом регулятора при отсутствии давления воды в трубопроводе под действием пружины 4 регулирующий клапан 1 находится в открытом положении («нормального открыт»).

Для регулирования перепада давлений (расхода воды) /рис. 2, в/ клапан 1 устанавливается так же, как в предыдущем варианте, снизу; подмембранная зона соединяется с началом регулируемого участка, а надмембранная зона — с концом регулируемого участка импульсными трубками 6. Усилие, развиваемое мембраной 5 под действием перепада давлений, уравновешивается усилием пружины 4. Если регулируемое давление или перепад давлений отклоняется от заданного значения, тогда под действием усилия мембраны 5 клапан 1 открывается или закрывается, что ведет к восстановлению значения регулируемого параметра.


Определение функциональной зависимости между входом и выходом


Входной величиной мембранного пневматического клапана (рис. 3) является давление ∆Рвх, а выходной — перемещение ∆Sвых штока клапана (отсчет ведется в малых приращениях от равновесного состояния) /4, с. 44/.


Рис. 3. Мембранный пневматический клапан


Если нельзя пренебречь инерцией подвижной системы клапана и силами трения, то условие равновесия сил, действующих на клапан, запишется как


.


Входное усилие при площади F мембраны равно:


.


где ∆Рвх - перепад давления на клапане, кПа;

F - площадь мембраны, мм.

Сила инерции fи равна произведению массы m подвижной системы на ускорение a = d2(Sвых)/dt2:


,


где m – масса подвижной системы, кг;

Sвых – перемещение штока клапана, мм;

t – время, с.

Учитывая только силу вязкого трения, которая пропорциональна скорости перемещения подвижной системы, получим:


,


где b кинематической вязкостью, м2/с.

Сила противодействия пружины пропорциональна ее сжатию


.


где с — жесткость пружины.

Подставив значения сил в уравнение равновесия, получим /4, с. 44/:


.

В настоящее время принято составлять дифференциальные уравнения звеньев в безразмерных (относительных) единицах.

Безразмерной единицей давления будем считать отношение ∆Рвх к максимальной величине давления Рмакс на мембрану, при котором клапан полностью закрывается; безразмерной единицей перемещения штока клапана примем отношение ∆Sвых к полному ходу Sмакс /4, с. 45/:



откуда


;


Подставив эти значения в дифференциальное уравнение, получим выражение его в безразмерных единицах:



С учетом того, что сSмакс = РмаксF можно записать:



Таким образом, при учете инерции подвижной системы и вязкого трения мембранный пневматический клапан при является колебательным звеном.

Постоянные времени и коэффициент передачи его равны:






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.