Лекции в ворде (Лк17)

Посмотреть архив целиком

18. МДП–структура

18.1. Идеальная МДП-структура

Если на окисел, покрывающий поверхность кристалла, нанести металлический электрод (затвор), то, изменяя его потенциал относительно объема кристалла, возможно изменять величину заряда в приповерхностной области полупроводника и, соответственно, её проводимость. Этот эффект положен в основу целого ряда полупроводниковых устройств, среди которых самое известное – МДП-транзистор.

Рассмотрим идеальный МДП-конденсатор, энергетическая диаграмма которого представлена на рис. 18.1.

Рис. 18.1 Идеальный МДП-конденсатор

Напомню (см. Лк 7), что состояние носителей в разнородных материалах (металл – диэлектрик - полупроводник) можно сравнить, используя понятие нулевого потенциала, т. е. принимая потенциал какой-либо точки (например, потенциал вакуума) за нуль (рис. 18.1). Тогда для перевода электрона со дна зоны проводимости полупроводника в вакуум без сообщения ему скорости потребуется энергия q·χ, равная:

.

(18.1)

Энергия q·χ есть энергия электронного сродства. Сродство количественно измеряется энергией, которую нужно затратить, чтобы перевести электрон с уровня Еc на вакуумный уровень. χ сродство к электрону полупроводника (electron affinity – способность присоединить электрон). Если энергию электрона отсчитывать от энергии Ферми, а не от , используют понятие термоэлектронной работы выхода или просто работы выхода Φ:

.

(18.2)

Таким образом, работа выхода равна разности между энергией покоящегося электрона в вакууме у поверхности образца полупроводника и уровнем Ферми в данном полупроводнике.

На границе металл-диэлектрик, диэлектрик-полупроводник, а в отсутствии диэлектрика на границе металл-полупроводник возникает контактная разность потенциалов:

.

(18.3)

Для случая «идеальной» МДП-структуры делается ряд допущений:

1. Разность работ выхода между металлом затвора и диэлектриком, диэлектриком и полупроводником, равна нулю или для потенциалов:

для n-типа: ,

для p-типа: .



(18.4)

Здесь – разность между уровнем Ферми F и положением уровня Ферми в собственном полупроводнике Ei. Условие означает, что в отсутствие внешнего напряжения энергетические зоны полупроводника не изогнуты (состояние плоских зон).

  1. В диэлектрике и на границах раздела металл-диэлектрик и полупроводник-диэлектрик нет никаких зарядов, т.е. диэлектрик не имеет дефектов. При любых смещениях в структуре могут существовать только заряд в ее полупроводниковой части и равный ему заряд противоположного знака на металлическом электроде, отделенном от полупроводника слоем диэлектрика.

  2. Диэлектрик является идеальным изолятором.

Если к МДП-конденсатору приложить электрическое напряжение, то его обкладки зарядятся. В зависимости от знака и величины приложенного напряжения поверхность полупроводника, будет обогащаться или обедняться основными носителями, или произойдет инверсия проводимости, в том случае, когда концентрация неосновных носителей заряда станет больше чем основных. Энергетические диаграммы, соответствующие различным потенциалам затвора приведены на рис. 18.2 (потенциал в глубине полупроводника принят равным 0).

Для примера рассмотрим полупроводник p-типа.

При отрицательном потенциале на затворе (Vg<0) к поверхности подтягиваются дырки, и их поверхностная концентрация относительно равновесной возрастает. Это – режим обогащения приповерхностной области полупроводника основными носителями заряда.

При подаче небольших положительных потенциалов на затвор электрическое поле отталкивает дырки от поверхности, и их концентрация вблизи поверхности уменьшается (режим обеднения), но их концентрация все еще превосходит концентрацию электронов, подтянутых электрическим полем к поверхности, так что тип проводимости приповерхностной области остается дырочным, т.е. приповерхностная область обедняется основными носителями заряда относительно объема.

При дальнейшем увеличении потенциала затвора концентрация электронов в приповерхностной области становится больше концентрации дырок в объеме, т.е. происходит изменение (инверсия) типа проводимости.

Рис. 18.2. Энергетические диаграммы при различных смещениях

Аналогичные явления будут иметь место для полупроводника n-типа (при этом искривление зон на диаграммах будет направлено в другую сторону).

В общем случае концентрации носителей изменяются по законам:


(18.5)