Лекции в ворде (ЛК2)

Посмотреть архив целиком

Глава 2. СОБСТВЕННЫЕ И ЛЕГИРОВАННЫЕ полупроводникИ

Электропроводность полупроводников зависит от количества электронов в зоне. Если валентная зона заполнена не полностью, то часть из находящихся в ней электронов также приобретает способность участвовать в электропроводности. Для характеристики переноса заряда электронами валентной зоны введена виртуальная частица – дырка*, обладающая положительным зарядом. Таким образом, перенос заряда в твердом теле может осуществляться как электронами, находящимися в зоне проводимости так и дырками, находящимися в валентной зоне.

Вводя в кристалл примеси, можно увеличивать концентрацию свободных электронов или дырок и таким образом увеличивать проводимость кристалла, делая её преимущественно дырочной или электронной.

2.1 Собственные и легированные полупроводники. Уравнение электронейтральности

Если валентному (связанному) электрону сообщить энергию равную Eg, образуется пара электрон-дырка, то есть образуются две частицы, которые могут принять участие в электропроводности, имеющие противоположные заряды. На образование одной частицы требуется энергия активации, равная Еа=Eg/2. Энергия, необходимая для увеличения концентрации носителей на единицу, называется энергией Ферми. Для чистого (беспримесного, собственного) полупроводника уровень Ферми находится примерно в середине запрещенной зоны (примерно, так как ) (см. подраздел 2.2.1). В собственном полупроводнике всегда выполняется равенство n0=p0=ni [см-3]. Концентрации носителей, находящихся в термодинамическом равновесии, равны между собой и равны собственной концентрации.

Рис. 2.1 Кристалл собственного полупроводника

Вблизи дна зоны проводимости зависимость энергии электрона от величины импульса (или волнового числа k):

(2.1)

В пространстве k (p) мы имеем параболическую зависимость энергии (рис.2.2,а). Обычно энергия свободного электрона (электрона в зоне проводимости) отсчитывается от Eс - энергии дна зоны проводимости, иногда от уровня Ферми (рис.2.3).

Ось, характеризующая кинетическую энергию дырок, направлена в противоположную сторону:

(2.2)

где Ev – энергия потолка валентной зоны, - эффективная масса дырок, определяемая аналогично (1. 16):

Рис. 2.2,а. Энергетическая диаграмма прямозонного полупроводника

Рис. 2.2б. Энергетическая диаграмма непрямозонного полупроводника

. (2.3)

Энергия дырки отсчитывается от Ev, иногда от уровня Ферми, чем большей энергией обладает дырка, тем ниже от Ev она опускается. Дырки с минимальной энергией будут скапливаться у потолка валентной зоны, электроны - у дна зоны проводимости. Отметим, что положение Eс и Ev не всегда совпадают в () пространстве. При совпадении их полупроводник называют прямозонным, в противном случае полупроводник называется непрямозонным. GaAs является прямозонным полупроводником, Si и Ge – непрямозонными (рис. 1.5).

В дальнейшем мы будем использовать упрощенную энергетическую диаграмму (рис. 2.3).







Рис. 2.3. Упрощенная энергетическая диаграмма собственного полупроводника

Образовавшиеся в результате разрыва ковалентной связи (генерации) электрон и дырка хаотично передвигаются по кристаллу до тех пор, пока электрон не будет захвачен дыркой, то есть не произойдет рекомбинация. Промежуток времени, прошедший с момента генерации частиц до их рекомбинации, называется временем жизни носителей. Для идеального собственного полупроводника

Наличие в кристалле дефектов приводит к появлению в запрещенной зоне энергетических уровней, положение которых зависит от типа дефектов (рис. 2.4). В этом случае .

Рис. 2.4 Дефекты в полупроводниках

Для управления электрическими свойствами полупроводников в них специально вводят примеси (легируют). Необходимо подчеркнуть, что при замещении атома кристалл остается электронейтральным! Только при ионизации атомов примеси, например, при введении в полупроводник IV группы периодической системы элементов (например, Si) примеси элементов V группы – доноров появляются дополнительные электроны, введение элементов III группы – акцепторов – приводит к появлению дополнительных дырок.

На рис.2.5 показана схема решетки кристалла Si, в который введен фосфор (V группа). Элемент V группы имеет 5 валентных электронов, четыре из них образуют связи с соседними атомами Si, пятый электрон связан только с атомом примеси, и эта связь слабее остальных, поэтому при нагреве кристалла пятый электрон отрывается первым, при этом атом фосфора приобретает положительный заряд, становясь ионом .

Рис. 2.5. Донорный полупроводник

Энергия ионизации доноров (Ed), как правило, невелика и при комнатной температуре донорная примесь отдает свои электроны, поэтому такие полупроводники и называют электронными или полупроводниками n-типа, а электроны – основными носителями заряда. Дырки в электронном полупроводнике являются неосновными носителями.

Введение донорной примеси приводит к увеличению концентрации электронов (при её ионизации) и, соответственно, к смещению уровня Ферми к зоне проводимости (чем он ближе к ней, тем больше концентрация электронов).

Рассмотрим, что происходит при введении в тот же кремний элемента III группы, например, бора. Элемент III группы имеет 3 валентных электрона, которые образуют связи с соседними атомами Si, дополнительная четвертая связь с Si может образовываться, если к атому бора от одного из его ближайших соседей перейдет еще один электрон (cм. рис. 2.6). Энергия такого перехода невелика, поэтому энергетический уровень акцептора, принимающего электрон, расположен вблизи валентной зоны. При этом атом бора ионизуется, заряжаясь отрицательно, а в том месте, откуда ушел электрон, образуется положительно заряженная дырка, которая может участвовать в переносе заряда: .

Рис. 2.6. Акцепторный полупроводник

Энергия ионизации акцепторов Ea<<Eg, и при комнатной температуре акцепторная примесь ионизованна, поэтому такие полупроводники и называют полупроводниками p-типа, а дырки – основными носителями заряда. Электроны в полупроводнике p-типа являются неосновными носителями. Введение акцепторной примеси приводит к смещению уровня Ферми к валентной зоне.

* Представление о дырках введено Я.И. Френкелем в 1928 г.


Случайные файлы

Файл
151796.rtf
139957.rtf
22481-1.rtf
18739.rtf
81323.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.