Економічне прогнозування (181009)

Посмотреть архив целиком

  • Методологічні основи соціально-економічного прогнозування


    Прогнозом називають науково обґрунтований висновок про майбутні події і перспективи розвитку процесів, про можливі наслідки управлінських рішень.

    За специфікою об'єктів прогнози поділяють на науково-технічні, економічні, соціальні, військово-політичні тощо. Економічні прогнози класифікують за масштабністю об'єкта на глобальні, макроекономічні, структурні (міжгалузеві та міжрегіональні), регіональні, галузеві, мікроекономічні.

    B світовій практиці прикладного прогнозування використовують різні методи: статистичні (прогнозна екстраполяція), функціонально-ієрархічні (прогнозні сценарії), методи структурної аналогії, імітаційного моделювання, експертні оцінки.

    При прогнозуванні соціально-економічних процесів перевага віддається статистичним методам, прогнозним результатом яких є очікувані у майбутньому значення характеристик процесу, тобто статистичний прогноз завжди є умовним.

    Іншою особливістю статистичного прогнозу є визначеність його в часі. Часовий горизонт прогнозу називають періодом упередження. За тривалістю цього періоду вирізняють прогнози: короткострокові (до 1 року), середньострокові (до 5 років) і довгострокові (від 5 до 20 років і більше). Тривалість періоду упередження залежить від специфіки об'єкта прогнозування, інтенсивності динаміки, тривалості дії виявлених закономірностей та тенденцій.

    Прогнозний результат на період упередження можна представити одним числом (точковий прогноз) або інтервалом значень, до якого з певною ймовірністю належить прогнозна величина (інтервальний прогноз).

    Статистичні прогнози ґрунтуються на гіпотезах про стабільність значень величини, що прогнозується; закону її розподілу; взаємозв'язків з іншими величинами тощо. Основний інструмент прогнозування — екстраполяція.

    Суть прогнозної екстраполяції полягає в поширенні закономірностей, зв'язків і відношень, виявлених в t-му періоді, за його межі.

    Залежно від гіпотез щодо механізму формування і подальшого розвитку процесу використовуються різні методи прогнозної екстраполяції. Їх можна об'єднати в дві групи:

    • екстраполяція закономірностей динаміки — тренду і коливань;

    • екстраполяція причинно-наслідкового механізму формування процесу — факторне прогнозування.

    Ці методи різняться не процедурою розрахунків прогнозу, а способом описування об'єкта моделювання. Екстраполяція закономірностей розвитку ґрунтується на вивченні його передісторії, виявленні загальних і усталених тенденцій, траєкторій зміни в часі. Абстрагуючись від причин формування процесу, закономірності його розвитку розглядають як функцію часу. Інформаційною базою прогнозування слугують одномірні динамічні ряди.

    При багатофакторному прогнозуванні процес розглядається як функція певної множини факторів, вплив яких аналізується одночасно або з деяким запізненням. Інформаційною базою виступає система взаємозв'язаних динамічних рядів. Оскільки фактори включаються в модель у явному вигляді, то особливого значення набуває апріорний, теоретичний аналіз структури взаємозв'язків.

    Важливим етапом статистичного прогнозування є верифікація прогнозів, тобто оцінювання їх точності та обґрунтованості. Ha етапі верифікації використовують сукупність критеріїв, способів і процедур, які дають можливість оцінити якість прогнозу.

    Найбільш поширене ретроспективне оцінювання прогнозу, тобто оцінювання прогнозу для минулого часу (ex-post прогноз). Процедура перевірки така. Динамічний ряд поділяється на дві частини: перша — для t= 1,2,3, ...,p — називається ретроспекцією (передісторією), друга — для t=p + 1, p + 2, p + 3, ..., p +(n —р) — прогнозним періодом.

    За даними ретроспекції моделюється закономірність динаміки і на основі моделі розраховується прогноз Yp+v, де v — період упередження. Ретроспекція послідовно змінюється, відповідно змінюється прогнозний період, що унаочнює рис. 1.1 (для v = 1).



    Оскільки фактичні значення прогнозного періоду відомі, то можна визначити похибку прогнозу як різницю фактичного уt і прогнозного Yt рівнів: et = yt – Yt. Всього буде n —р похибок. Узагальнюючою оцінкою точності прогнозу слугує середня похибка:


    абсолютна , квадратична .


    Для порівняння точності прогнозів, визначених за різними моделями, використовують похибку апроксимації (%):



    Якщо результат оцінювання точності прогнозу задовольняє визначені критерії точності, скажімо, 10%, то прогнозна модель вважається прийнятною і рекомендується для практичного використання. Очевидно, що похибка прогнозу залежить від довжини ретроспекції та горизонту прогнозування. Оптимальним співвідношенням між ними вважається 3 : 1.

    При оцінюванні та порівнянні точності прогнозів використовують також коефіцієнт розбіжності Г. Тейла, який дорівнює нулю за відсутності похибок прогнозу і не має верхньої межі:



    Існуючі методи верифікації прогнозів у більшості своїй ґрунтуються на статистичних процедурах, які зводяться до побудови довірчих меж прогнозу, себто до побудови інтервальних прогнозів.

    1. Методи і моделі прогнозування одновимірних процесів


    Ряди динаміки характеризують процеси розвитку соціально-економічних явищ. Цим процесам властиві дві взаємопов'язані риси: динамічність та інерційність, що формують закономірність розвитку.

    Ряди, в яких рівні коливаються навколо постійної середньої, називаються стаціонарними. Економічні ряди, як правило, нестаціонарні. Для більшості з них характерна систематична зміна рівнів з нерегулярними коливаннями, коли піки і западини чергуються з різною інтенсивністю. Скажімо, економічні цикли (промислові, будівельні, фондового ринку тощо) повторюються з різною тривалістю і різною амплітудою коливань.

      1. Короткострокове прогнозування на основі ковзних середніх

    Досить поширеним і простим методом аналізу динаміки є згладжування ряду. Суть його полягає в заміні фактичних рівнів уt , середніми за певними інтервалами. Варіація середніх порівняно з варіацією рівнів первинного ряду значно менша, а тому характер динаміки проявляється чіткіше. Процедуру згладжування називають фільтруванням, а оператори, за допомогою яких вона здійснюється, — фільтрами. На практиці використовують переважно лінійні фільтри, з-поміж яких найпростіший — ковзна середня з інтервалом згладжування m < n. Інтервали поступово зміщуються на один елемент:



    Для кожного з них визначається середня , яка припадає на середину інтервалу. Якщо m — непарне число, тобто m = 2p + 1, а ваги членів ряду в межах інтервалу однакові


    , то


    де yiфактичне значення рівня в i-й момент; i — порядковий номер рівня в інтервалі.

    При парному m середина інтервалу знаходиться між двома часовими точками і тоді проводиться додаткова процедура центрування (усереднення кожної пари значень).

    Ковзна середня з однаковими вагами аr при згладжуванні динамічного ряду погашає не лише випадкові, а й властиві конкретному процесу періодичні коливання. Припускаючи наявність таких коливань, використовують зважену ковзну середню, тобто кожному рівню в межах інтервалу згладжування надають певну вагу. Способи формування вагової функції різні. B одних випадках ваги відповідають членам розкладання біному , при m=3, скажімо, ar = 1/4, 1/2,1/4. B інших випадках до даних інтервалу згладжування добирається певний поліном, наприклад, парабола , де i = -р, …, p. Тоді вагова функція така:


    Для m = 5

    Для m = 7 і т.д.


    Як видно з формул, ваги симетричні відносно центра інтервалу згладжування, сума їх з урахуванням винесеного за дужки множника дорівнює .

    Основна перевага ковзної середньої — наочність і простота тлумачення тенденції. Проте не слід забувати, що ряд ковзних середніх коротший за первинний ряд на 2p рівнів, а отже, втрачається інформація про крайні члени ряду. I чим ширший інтервал згладжування, тим відчутніші втрати, особливо нової інформації . Окрім того, маючи спільну основу розрахунку, ковзні середні виявляються залежними, що при згладжуванні значних коливань навіть за відсутності циклів у первинному ряду може вказувати на циклічність процесу (ефект Слуцького).

    У симетричних фільтрах стара і нова інформація рівновагомі, а при прогнозуванні важливішою є нова інформація. У такому разі використовують асиметричні фільтри. Найпростіший з них — ковзна середня, яка замінює не центральний, а останній член ряду (адаптивна середня):


    .


    У наведеній формулі перший елемент характеризує інерцію розвитку, другий — адаптує середню до нових умов. Таким чином середня з кожним кроком ніби оновлюється. Ступінь оновлення визначається постійною вагою . При використанні зважених асиметричних фільтрів вагова функція формується з урахуванням ступеня новизни інформації. Такою є середня з екс-поненційно розподіленими вагами:


    ,


    де Yt, експоненційна середня, тобто згладжене значення рівня динамічного ряду на момент t; вага ( t - r )-гo рівня; a — параметр згладжування, який визначає вагу t-гo рівня, значення його коливаються в межах від 0 до 1.

    Розклавши формулу за елементами суми, маємо


    ,

    або


    Друга складова останньої формули є не що інше, як експоненційна середня для (t- l)-гo моменту. Отже, експоненційну середню можна представити як лінійну комбінацію фактичного рівня t-гo моменту та експоненційної середньої (t - l)-гo моменту: .

    Чим віддаленіший від t-го моменту рівень ряду, тим менша його відносна вага і вклад у тенденцію. Так, при a = 0,2 ваги становлять: для t- го моменту — 0,2, для ( t – 1 )- го моменту — 0,2(1 -O,2) = 0,16; для (t-2)-ro моменту — 0,2(1 -0,2)2 = 0,128 і т. д. Надаючи більшу вагу новій інформації, експоненційна середня адаптується до нових умов, що робить її досить ефективним і надійним методом короткострокового прогнозування.

    Для розрахунку експоненційної середньої Yt, необхідно визначити початкові умови: початкову величину Y0 і параметр а. Як початкову величину можна використати середній рівень за минулий (до динамічного ряду) період, або за відсутності таких даних, перший рівень ряду, тобто Yo=yt. Щодо параметра а, то на практиці найчастіше використовують його значення в інтервалі від 0,1 до 0,3 . Оскільки від параметра а залежить сума вагових коефіцієнтів на певному часовому інтервалі m, то можна за наперед заданим значенням цих величин орієнтовно визначити параметр а:



    Наприклад, якщо часовий інтервал m = 10 місяців, а сума ваг = 0,90 , то . Тобто, при a = 0,2 десять членів динамічного ряду визначать 90% величини експоненційної середньої.

    При прогнозуванні процесу вдаються до багаторазового згладжування. Якщо період упередження v = 1, то використовують подвійне згладжування. Експоненційна середня другого порядку визначається за такою ж самою рекурентною формулою на основі згладженого ряду :


    .


    Якщо припустити наявність лінійного тренда, прогнозний рівень Yt+1 можна розрахувати за формулою :


    Довірчі межі прогнозного рівня визначаються традиційно:


    де  дисперсія рівнів первинного динамічного


    ряду; t— квантиль розподілу Стьюдента для ймовірності ( 1 -  ).

    Очевидно, що за умови значної варіації рівнів динамічного ряду довірчі межі будуть досить широкими.

    Базову модель експоненційного згладжування можна використати при моделюванні рядів, які мають сезонну компоненту.

      1. Оцінювання сезонної компоненти

    Сезонні коливання формуються під впливом не лише природно-кліматичних, але й соціально-економічних факторів. Сила і напрям дії окремих факторів формує різну конфігурацію сезонної хвилі. За своїм характером сезонна компонента може бути адитивною або мультиплікативною. Для адитивної компоненти характерні сталі коливання навколо середнього рівня чи тренда, для мультиплікативної — зростання амплітуди коливань з часом.

    Кожний рівень ряду уt , належить до певного сезонного циклу s, Довжина якого становить 12 місяців, або 4 квартали. Відношення Yt до середнього рівня за цикл називається індексом сезонності:


    .


    За умови, що вплив несезонних факторів еліміновано, середня з iндексіву j-го циклу становить 1, або 100 % .

    У нестаціонарних рядах замість середньої використовують лі-н'ю тренда Yt = y(t), яка плавно проходить через ряд динаміки і , як і середня , елімінує його нерівномірності. Сукупність індексів Сезонності в межах циклу характеризує сезонний ритм.

    Прогнозування сезонних процесів ґрунтується на декомпозиції динамічного ряду. Припускають, що у майбутньому збережеться тенденція і такий же характер коливань. За таких умов прогноз на будь-який місяць (квартал), визначений методом екстра-поляціїтренда, коригується індексом сезонності: , де v — період упередження. Скажімо, поквартальна динаміка обсягів імпорту пального (тис. т) за два роки (n = 8, t1 = -3,5, tn = 3,5) описується трендом Yt = 923,7 + 33,8t, за яким теоретичний обсяг імпорту у восьмому кварталі становить 1042,0 тис.т, а в 1-му кварталі наступного року (v=1) передбачається Yt+v= 1042,0 + 33,8 * 1 = 1075,8 . Якщо середній індекс сезонності 1-го кварталу It = 1,34, то скоригований на сезонність прогнозний рівень дорівнює ,= 1,34 - 1075,8 = 1441,6 тис.т.

    Динаміка більшості показників не виявляє чітко вираженої тенденції розвитку. Через постійний перерозподіл впливу факторів, які формують динаміку процесу, змінюється інтенсивність динаміки, частота та амплітуда коливань. До таких фактичних даних більш еластичною виявляється ковзна середня, інтервал згладжування якої дорівнює сезонному циклу (4 або 12). Коригування ковзної середньої на сезонність здійснюється так само, як коригування лінійного тренда.

    Ha використанні експоненційної середньої ґрунтується ceзонно-деколіпозиційна модель Холта-Вінтера, в якій поєднуються моделі стаціонарності, лінійності та сезонності. Послідовність операцій така:

    1. Визначаються індекси сезонності It

    2. Ряд динаміки фільтрується від сезонних коливань діленням yt на коефіцієнт сезонності з лагом s; ряд ut = yt : It-s називається декомпозиційним.

    3. Перші різниці декомпозиційного ряду bt = (ut – ut-1 ) розглядаються як характеристики лінійного тренда.

    Кожна з компонент моделі згладжується за допомогою експоненційної середньої. При комбінації лінійної та сезонно-адитивної моделей тренда:



    Значення параметрів згладжування A, D і C в системі Statistica за умовчування визначаються на рівні 0,1, в [10] рекомендуються: A = 0,2; B = 0,2; C = 0,5.

    За умови ізольованої оцінки трьох факторів прогноз на період упередження v визначається як скоригована на сезонність сума прогнозного рівня ut , і лінійного тренда:


    .


    При комбінації лінійного та сезонно-мультиплікативного трендів кінцевий прогноз визначається за формулою :


    , де .


      1. Типи трендових моделей

    При моделюванні динамічних процесів причинний механізм формування властивих їм особливостей у явному вигляді не враховується. Будь-який процес розглядається як функція часу. Певна річ, час не є фактором конкретного соціально-економічного процесу, змінна часу t просто акумулює комплекс постійно діючих умов і причин, які визначають цей процес.

    У моделях динаміки процес умовно поділяється на чотири складові:

    • довгострокову, детерміновану часом еволюцію — трендf(t));

    • періодичні коливання різних частот Ct;

    • сезонні коливання St;

    • випадкові коливання et.

    Зв'язок між цими складовими представляється адитивно (сумою) або мультиплікативно (добутком):



    Така умовна конструкція дає змогу, залежно від мети дослідження, вивчати тренд, елімінуючи коливання, або вивчати коливання, елімінуючи тренд. При прогнозуванні здійснюється зведення прогнозів різних елементів в один кінцевий прогноз.

    Характерною властивістю будь-якого динамічного ряду є залежність рівнів: значення уt , певною мірою залежить від попередніх значень: i т. д. Для оцінювання ступеня залежності рівнів ряду використовують коефіцієнти автокореляції rр з часовим лагом p = 1, 2, ..., т.

    Коефіцієнт rр характеризує щільність зв'язку між первинним рядом динаміки і цим же рядом, зсуненим на p моментів. У табл. 2.1 наведено зсунені ряди динаміки з лагами p - 1, 2, 3. Як видно, із збільшенням лага p кількість пар корельованих рівнів зменшується. Так, при p = 1 довжина корельованих рядів менша за первинний ряд на один рівень, при p = 2 — на два рівні і т. д. Через це на практиці при визначенні автокореляційної функції дотримуються правила, за яким кількість лапв .


    Таблиця 2.1

    Змінна часу t

    Рівень ряду у

    р=1

    р = 2

    р = 3

    1

    2

    З

    n-2

    n-1

    n


    Значення коефіцієнта автокореляції rр визначається величиною лага p і не виходить за межі ±1:


    де


    Послідовність коефіцієнтів rр називають автокореляційною функцією і зображують графічно у вигляді автокорелограми з абсцисою p та ординатою rp.

    За швидкістю згасання автокореляційної функції можна зробити висновок про характер динаміки. Найчастіше використовується значення r1. Характеризуючи ступінь залежності двох послідовних членів ряду, коефіцієнт автокореляції є мірою неперервності цього ряду. Якщо , то ряду динаміки властива тенденція розвитку, якщо — рівні ряду незалежні. Відносно високі значення коефіцієнта автокореляції при p = k, 2k, 3k, … свідчать про регулярні коливання.

    На відміну від детермінованої складової випадкова складова не зв'язана із зміною часу. Аналіз цієї складової є основою перевірки гіпотези про адекватність моделі реальному процесу. За умови, що модель вибрано правильно, випадкова складова являє собою стаціонарний процес з математичним сподіванням M(e) = 0 і дисперсією



    де m — число параметрів функції.

    Для оцінювання стаціонарності випадкової складової використовують циклічний коефіцієнт автокореляції першого порядку r1. Корелюються ряди залишкових величин: та

    Припускаючи, що, формула розрахунку спрощується:


    .


    Існують таблиці критичних значень циклічного коефіцієнта автокореляції для додатних і від'ємних значень (додаток 5). Якщо фактичне значення r1 менше за критичне, автокореляція вважається неістотною, а випадкова складова — стаціонарним процесом. У разі, коли фактичне значення r1 перевищує критичне, можна зробити висновок про неадекватність детермінованої складової реальному процесу.

    Важливою складовою динамічних процесів є тенденція середньої, тобто основний напрям розвитку. B аналізі динамічних рядів тенденцію представляють у вигляді плавної траєкторії та описують певною функцією, яку називають трендом Yt = f(t), де t= 1, 2, … , n — змінна часу. Ha основі такої функції здійснюється вирівнювання динамічного ряду і прогнозування подальшого розвитку процесу.

    Процедура вирівнювання динамічних рядів включає два етапи: обґрунтування (вибір) типу функції, яка б адекватно описувала характер динаміки, та оцінювання параметрів функції. Ha практиці переважно використовують функції, параметри яких мають конкретну інтерпретацію залежно від характеру динаміки. Найбільш поширені поліноми (многочлени), різного роду експоненти та логістичні криві. Так, параметри полінома p-ro ступеня Yt = a + bt + ct2 + dt3характеризують:

    а — рівень динамічного ряду при t = 0;

    b — абсолютну швидкість зміни рівнів ряду (ординат);

    2c — прискорення (прирощення абсолютної швидкості);

    d — зміну прирощення тощо.

    Поліном 1-го ступеня, тобто лінійний тренд Yt = a + bt, описує процеси, які рівномірно змінюються в часі і мають стабільні прирости ординат. Поліном 2-го ступеня (парабола) Yt = a + bt + ct2 здатний описати процес, характерною особливістю якого є рівноприскорене зростання або зменшення ординат. Форма параболи визначається параметром c: при c > 0 гілки параболи спрямовані вгору — парабола має мінімум, при c < 0 гілки параболи спрямовані вниз — парабола має максимум. При визначенні екстремуму (max, min) похідну параболи прирівнюють до нуля і розв'язують систему рівнянь відносно t. Наприклад, динаміка захворювань при епідемії грипу (чол.) описується параболою Yt = 264 + 45t - 1,5t2. Похідна параболи 45-2,25t = 0, a t = 20. Максимум захворювань буде зафіксовано через 20 днів від початку відліку часу (t = 0) і становитиме Ymах = 264 + 45 – 20 - 1,5  202 = 564 чол. У полінома 3-го ступеня Yt = a + bt + ct2 + dt3 знак прирощення ординати може змінюватися один чи два рази.

    Якщо характерною властивістю процесу є стабільна відносна швидкість (темпи приросту), такий процес описується експонентою яка може набувати різних еквівалентних форм. Основна (показникова) форма експоненти


    Yt = abt


    де b — середня відносна швидкість зміни ординати: при b > 1 ордината зростає з постійним темпом, при b < 1, навпаки, зменшується. Абсолютний приріст пропорційний досягнутому рівню. Експоненту можна представити у формі:


    або


    де  = lnb, е = 2,718 — основа натурального логарифма, lne = 1.

    Експоненти приводяться до лінійного виду заміною yt десятковими або натуральними логарифмами:


    lgY =lga + tlgb, |

    lnY = lna + tlne = lna + t,

    lnY = lnea + lnebt = lna + lnbt = lna + t .


    Оцінювання параметрів трендових рівнянь найчастіше здійснюється методом найменших квадратів (MHK), основною умовою якого є мінімізація суми квадратів відхилень фактичних значень yt від теоретичних Yt, визначених за трендовим рівнянням :


    .


    Параметри поліноміального тренда визначаються безпосередньо розв'язуванням систем p + 1 нормальних рівнянь. Експонента, як показано вище, приводиться до лінійного виду логарифмуванням; розраховані параметри підлягають потенціюванню.

    Виявлену тенденцію можна продовжити за межі динамічного ряду Така процедура називається екстраполяцією тренда. Принципова можливість екстраполяції ґрунтується на припущенні, що умови, які визначали тенденцію у минулому, не зазнають істотних змін у майбутньому. Формально операцію екстраполяції можна представити як визначення функції:


    ,


    де Yt+v — прогнозне значення на період упередження v; — база екстраполяції, найчастіше це останній, визначений за трендом рівень ряду.

    Екстраполяція тренда дає точковий прогноз. Очевидно, що «влучення в точку» малоймовірне. Адже тренду властива невизначеність, передусім через похибки параметрів. Джерелом цих похибок є обмежена сукупність спостережень yt, кожне з яких містить випадкову компоненту et,. Зсунення періоду спостереження лише на один крок веде до зсунення оцінок параметрів. Випадкова компонента буде присутня і за межами динамічного ряду, а отже, її необхідно врахувати. Для цього визначають довірчий інтервал, який би з певною ймовірністю окреслив межі можливих значень Yt + v Точковий інтервал перетворюється в інтервальний. Ширина інтервалу залежить від варіації рівнів динамічного ряду навколо тренда та ймовірності висновку (1 - а):

    Де Sp — середня квадратична похибка прогнозу, значення якої залежить від дисперсії тренда та дисперсії відхилень від тренда . Зокрема, для лінійного тренда


    .


    Якщо база прогнозування — останній рівень ряду, то , a замінюється на . Після нескладних алгебраїчних перетворень похибку прогнозу за лінійним трендом можна представити так:



    або, позначивши підкореневий вираз символом z, sp = sez.

    Тобто похибка прогнозу залежить від залишкової дисперсії , довжини динамічного ряду (передісторії) n та періоду упередження v. Чим довший період передісторії, тим похибка менша, а збільшення періоду упередження, навпаки, веде до зростання похибки прогнозу.

      1. Прогнозування повних циклів

    Свої особливості має моделювання динамічних процесів з ефектом насичення, коли темпи зростання (зниження) уповільнюються і рівень наближується до певної межі (питомі витрати ресурсів, споживання продуктів харчування на душу населення тощо). Для їх описування використовують клас кривих, що мають горизонтальну асимптоту . Найпростішою з-поміж них є модифікована експонента:



    де параметр а — різниця між ординатою Yt, при t = 0 та асимптотою K. Якщо a < 0, асимптота знаходиться вище кривої, якщо a > 0 — асимптота нижче кривої. Параметр b характеризує співвідношення послідовних приростів ординати. За умови рівномірного розподілу ординати по осі часу ці співвідношення є сталими:


    .


    Модифікована експонента описує процеси, на які діє певний обмежувальний фактор, і вплив цього фактора зростає зі зростанням Yt. У разі, коли обмежувальний фактор впливає лише після певного моменту, до якого процес розвивався за експоненційним законом, то такий процес найкраще апроксимується S-подібною функцією з точкою перегину P, в якій прискорене зростання змінюється уповільненням. Наприклад, попит на новий товар попервах незначний; потім, після визнання споживачами, він стрімко зростає, але у міру насичення ринку темпи зростання уповільнюються, згасають. Попит стабілізується на певному рівні. Аналогічні фази розвитку мають процеси нововведень і винаходів, ефективність використання ресурсів тощо. З-поміж S-подібних кривих, що описують повний цикл розвитку, найпоширенішою є функція Перла-Ріда — логістична крива:


    .


    Якщо показник процесу — частка, що змінюється в межах від 0 до 1, то формула логістичної функції спрощується:


    .


    У страховій і демографічній статистиці використовують іншу S-подібну функцію — криву Гомперца: або в логарифмах


    .


    Тобто крива Гомперца приводиться до модифікованої експоненти, у якої сталими є відношення приростів ординат у логарифмах.

    Оцінювання параметрів функцій, які мають асимптоти, порівняно з поліномами та експонентами значно складніше. Тут можливі два варіанти.

    За першим варіантом асимптота у вигляді нормативу, стандарту тощо визначається апріорі — . Тоді модифіковану експоненту можна представити так:


    .


    Замінивши на z і прологарифмувавши рівняння, дістанемо лінійну функцію логарифмів lgz = lga + tlgb. Аналогічно приводиться до лінійного виду логістична функція , яка при заміні на z у логарифмах набуває такого ж вигляду: lgz = lga + tlgb. Параметри приведених до лінійного виду функцій, як і параметри поліномів, можна оцінити методом найменших квадратів.

    Отже, клас моделей динаміки досить широкий, і вони описують різні процеси розвитку. Вибір типу моделі у конкретному дослідженні ґрунтується передусім на теоретичному аналізі специфіки процесу, його внутрішньої структури, взаємозв'язків з іншими процесами. Ha основі такого аналізу в загальних рисах визначається характер динаміки (рівномірний, рівноприскорений, з насиченням тощо) та окреслюється коло функцій, здатних апроксимувати цей процес. Серйозною підмогою при виборі конкретної моделі слугують формальні методи. Скажімо, для поліномів — це аналіз послідовних різниць. Рівність різниць р-го порядку розглядається як симптом того, що процес описується поліномом р-го порядку. Якщо приблизно однакові різниці 1-го порядку , використовують лінійний тренд, якщо однакові різниці 2-го порядку — — параболу і т. д. Певні складнощі можуть виникнути при виборі експоненти. Адже S-подібна крива до точки перегину описує експоненційний тренд, а сама точка перегину може бути за межами динамічного ряду. Отже, якщо межа насичення теоретично можлива і процес у майбутньому може згасати або існують певні обмеження для процесу (правові, матеріальних ресурсів, виробничих потужностей тощо), то перевага віддається S-подібній кривій.

    Оскільки первинним рядам динаміки властива значна варіація рівнів yt то аналіз послідовних різниць більш коректно проводити на основі рядів ковзних середніх. У табл.2.2 наведено основні характеристики такого аналізу (апріорні тести), за якими визначається конкретний тип моделі повного циклу.


    Таблица 2.2

    Характеристика

    Властивості характеристик

    Тип трендової моделі

    Приблизно однакові

    Поліном 1-го ступеня

    Лінійно змінюються

    Поліном 2-го ступеня

    Приблизно однакові

    Експонента

    Лінійно змінюються

    Модифікована експонента

    Лінійно змінюються

    Логістична крива

    Лінійно змінюються

    Крива Гомперца


    При зворотному напрямку тенденції різниці розраховуються, починаючи з кінця. За наявності від'ємних різниць логарифмування неможливе, тому необхідно збільшити інтервал згладжування ковзних середніх.


      1. Типи моделей взаємозв'язку

    Усі явища навколишнього світу взаємопов'язані й взаємозумовлені. У складному переплетенні всеохоплюючого взаємозв'язку будь-яке з них є наслідком дії певної множини причин і водночас причиною інших явищ.

    Логічний зміст і практичну значущість статистичних моделей взаємозв'язку слід розглядати саме в площині співвідношення причинності і зв'язків, що вимірюються статистичними методами. Суть причинності полягає в породженні одного явища іншим. Причина — активна основа, що примушує інше явище змінюватися. Сама по собі причина не визначає наслідку. Останній залежить і від умов, у яких діє причина. Через нерозрізненість причин і умов при моделюванні вони об'єднуються в одне поняття «фактор», а наслідок розглядається як результат дії факторів. Отже, в рамках моделі досліджується детермінованість результату факторами.

    Методологічні проблеми побудови моделей взаємозв'язку можна об'єднати в дві групи:

    • формування ознакової множини моделі, себто визначення кількості факторів та їх числових еквівалентів;

    • модельна специфікація — вибір функціонального виду моделі, ідентифікація та оцінювання параметрів.


  • Случайные файлы

    Файл
    kursovik.doc
    28248-1.rtf
    132380.rtf
    95978.rtf
    18349.rtf




    Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
    Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
    Это можно сделать совершенно бесплатно. Читайте подробности тут.