Увеличение степени защиты стали от коррозии в нейтральных и кислых средах (166671)

Посмотреть архив целиком

Аннотация


Работа посвящена проблеме увеличения степени защиты стали от коррозии в нейтральных и кислых средах, при использовании фосфорсодержащих ингибиторов, а также совершенствованию дискретных методов определения скорости коррозии.

В первом разделе работы приведен анализ литературных данных по изучаемой проблеме.

Во втором разделе содержатся результаты расчета термодинамических параметров основной реакции.

В третьем разделе представлены результаты расчета материального баланса процесса получения борат метилфосфита.

Четвертый и пятый разделы, соответственно, посвящены расчету теплового баланса стадии синтеза, разработке структурно-функциональной схемы процесса и расчету одного из аппаратов.

Шестой раздел содержит описание объектов и методов исследования, результаты проведенных экспериментов.




Содержание


Введение

1. Литературный обзор

1.1 Проблема коррозии

1.2 Механизм коррозионных разрушений

1.3 Виды коррозионных разрушений

1.4 Термодинамическая оценка процесса электрохимической коррозии

1.5 Кинетическое обоснование процесса коррозии

1.5.1 Поляризация электродных процессов

1.5.2 Концентрационная поляризация

1.5.3 Электрохимическое перенапряжение

1.6 Методы защита металлов от коррозии

1.7 Классификация ингибиторов

1.8 Методы определения скорости коррозии

1.9 Датчики скорости коррозии

2. Обсуждение результата термодинамического анализа

2.1 Эмпирические методы расчета термодинамических величин

2.1.1 Метод Неймана-Коппа

2.1.2 Методы приближенного расчета энтропии и теплот образования веществ

2.2 Расчет термодинамических характеристик основной реакции

3. Расчет материального баланса

4. Тепловой баланс стадии синтеза

5. Структурно-функциональная схема и расчет емкостного аппарата

5.1 Описание структурно-функциональной схемы

5.2 Расчет емкостного аппарата

6. Экспериментальная часть

6.1 Объекты и методы исследования

6.2 Синтез целевого продукта

6.3 Кинетические исследования

6.4 Определение степени защиты

7. Методическая часть

Выводы




1. Литературный обзор


1.1 Проблема коррозии


Коррозия металлов и сплавов в агрессивных средах наносит огромный ущерб. В результате коррозии преждевременно выходят из строя нефте-, газо- и водопроводы, металлические конструкции, аппараты, машины и оборудование. Прямые потери от коррозии (потери стоимости выбывших из строя основных фондов, затраты на противокоррозионную защиту, на капитальные и текущие ремонты по причине коррозии) в промышленно развитых странах составляют 2–5% национального дохода, потери металлофонда – 15–30% его ежегодной выплавки. Косвенные потери, согласно ориентированным расчетам превышают прямые в 1,5 – 2 раза [28].

Несмотря на большие возможности, которыми располагает современная техника защиты металлов, расходы, связанные с коррозией металлических изделий, конструкций и оборудования весьма велики.

Ежегодные затраты на защиту от коррозии оборудования из стали достигают примерно 20% стоимости вновь изготовленных сооружений и тенденция роста этих затрат не уменьшается [34]. Поэтому разработка мероприятий, направленных на повышение коррозионной стойкости металлов и изделий из них, является весьма актуальной задачей.

Научно-исследовательские работы по проблеме коррозии металлов в различных агрессивных средах ведутся, в основном, по следующим направлениям:

  • создание новых коррозионно-стойких конструкционных материалов;

  • разработка способов защиты от коррозии конструкций, оборудования и материалов [31].

В настоящее время, вызывает интерес разработка средств технического контроля и обеспечения защиты конструкций и оборудования от коррозии металлов. Наиболее важно это для химической и нефтехимической промышленности, с целью увеличения эксплутационных ресурсов химического оборудования путем своевременного диагностирования и защиты.


1.2 Механизм коррозионных разрушений


Самопроизвольное окисление металлов, вредное для промышленной практики (уменьшающее долговечность изделий), называется коррозией. Среда, в которой металл подвергается коррозии (корродирует), называется коррозионной, или агрессивной. При этом образуются продукты коррозии: химические соединения, содержащие металл в окисленной форме.

Термин «коррозия» имеет не столько научное, сколько инженерное значение. Правильнее было бы употреблять термин «окисление», независимо от того, вредно или полезно оно для нашей практики [33].

По механизму протеканию различают электрохимическую и химическую коррозии.

Электрохимическая коррозия металлов возникает при взаимодействии металлов с электролитами. Причиной ее является термодинамическая неустойчивость металлов в этих средах. Поверхностные атомы металла способны переходить в раствор электролита в виде ионов. Этому способствует гидратация ионов металла. Поэтому положительные ионы в растворе сосредоточиваются около поверхности металла. На границе металл – раствор образуется двойной электрический слой. В результате этого скорость перехода катионов металла в раствор приближается к скорости осаждения их из раствора на металле. Через некоторое время наступает динамическое равновесие и растворение металла прекращается. Однако в случае отвода избыточных электронов процесс растворения металла продолжится. Такой процесс возможен при образовании короткозамкнутых гальванических элементов. При этом одновременно протекают два электродных процесса:

  • анодный процесс – переход ионов металла в раствор и накопление избыточных электронов в металле:


(1.1)


  • катодный процесс – ассимиляция избыточных электронов ионами, атомами или молекулами электролита (деполяризаторами– Д), которые при этом восстанавливаются:


(1.2)


Эти две «полуреакции» составляют единый процесс. Согласно современной кинетической теории коррозии металлов являются сопряженными, то есть одна не может протекать без участия второй, и скорость всего процесса определеятся соотношением скоростей обеих реакций [10, 28].

Окисление металла и восстановление окислителя могут протекать на одном и том же участке поверхности металла, но могу быть и разделены пространственно. В силу высокой электропроводности металлов, электроны легко мигрируют по поверхности электрода, зоны перемещения электронов очень подвижны и хаотичны. Например, под влиянием различных причин они могу локализоваться в одном месте, вызывая местную (неравно мерную) коррозию [31].

Особенностью химической коррозии является образование продуктов коррозии непосредственно в месте взаимодействия металлов с агрессивной средой. По условиям протекания процесса различают:

  • газовую коррозию;

  • коррозию в неэлектролитах (например, в сернистой нефти, крекинг-бензинах, сырых фенолах, спиртах и др.).

Наибольшее значение имеет газовая коррозия. Она проявляется при высоких температурах [5, 10].


1.3 Виды коррозионных разрушений


Коррозия, в зависимости от природы металла, агрессивной среды и других условий, приводит к различным видам разрушений. На рис. 1 представлены разрезы через прокорродировавший образец металла, показывающие возможные изменения рельефа поверхности в результате коррозии.


Рисунок 1.1Схематическое изображение различных видов коррозии:

А – равномерная коррозия; Б – коррозия пятнами; В, Г – коррозия язвами; Д – точечная коррозия (питтинг); Е – подповерхностная коррозия; НН – исходная поверхность металла; КК – рельеф поверхности, измененный вследствие коррозии.


Иногда коррозия протекает со скоростью, почти одинаковой по всей поверхности; в таком случае поверхность становится только немного более шероховатой, чем исходная (рисунок 1.1А) Часто наблюдается различная скорость коррозии на отдельных участках: пятнами (рисунок 1.1Б), язвами (рисунок 1.1В и 1.1Г). Если язвы имеют малое сечение, но относительно большую глубину, (рисунок 1.1Д), то говорят о точечной коррозии (питтинг). В некоторых условиях небольшая язва распространяется вглубь и вширь под поверхностью (рисунок 1.1E).

Неравномерная коррозия значительно более опасна, чем равномерная. Неравномерная коррозия, при сравнительно небольшом количестве окисленного металла, вызывает большое уменьшение сечения в отдельных местах. Язвенная или точечная коррозия могут привести к образованию сквозных отверстий, например в листовом материале, при малой потере металла [31].

Приведенная классификация, конечно, условна. Возможны многочисленные формы разрушения, лежащие между характерными типами, показанными на рисунок 1.2.


Рисунок 1.2Межкристаллитная коррозия.


Некоторые сплавы подвержены своеобразному виду коррозии, протекающей только по границам кристаллитов, которые оказываются отделенными друг от друга тонким слоем продуктов коррозии (межкристаллитная коррозия). Здесь потери металла очень малы, но сплав теряет прочность. Это очень опасный вид коррозии, который нельзя обнаружить при наружном осмотре изделия.


1.4 Термодинамическая оценка процесса электрохимической коррозии


Процесс электрохимической коррозии совокупность двух сопряженно протекающих реакций:


(анодный процесс),

(катодный процесс),


где D – деполяризатор (окислитель).

Причина коррозии – термодинамическая неустойчивость металлов, сплавов и сталей в агрессивной среде. Определить вероятность протекания коррозионного процесса, как и любого электрохимического процесса, можно по изменению энергии Гиббса:


Случайные файлы

Файл
48384.rtf
116090.rtf
4.doc
96098.rtf
75039-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.