Билет №1

Первообразная функция.


Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:

F(x) = f(x).

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F1(x) = F2(x) + C.


Неопределенный интеграл.


Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением: F(x) + C.

Записывают:


Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:


1.

2.

3.

4.

где u, v, w – некоторые функции от х.


Таблица неопределённых интегралов.


=

=

=

=

=

=

= ex + C

= sinx + C

= -cosx + C

= tgx + C

= -ctgx + C

=

=

=

Билет №2


Способ подстановки (замены переменных).


Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла: f(x)dx = f[(t)](t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример. Найти неопределенный интеграл .

Сделаем замену t = sinx, dt = cosxdt.

Интегрирование по частям.

Способ основан на известной формуле производной произведения:

(uv) = uv + vu

где u и v – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла: