Изучение теории и технологии выплавки шарикоподшипниковой стали марки ШХ4 (105191)

Посмотреть архив целиком

8



Министерство образования и науки Украины


Запорожская государственная инженерная академия





Факультет М и ООС


Кафедра МЧМ





Курсовая работа


На тему: “Изучение теории и технологии выплавки шарикоподшипниковой стали марки ШХ4”




По курсу: “Технология производства специальных сталей и сплавов





Выполнил: ст. гр. МЧ-2-98д

Паламаренко А.Ю.


Проверил: канд. тех. наук, доцент

Воденников Сергей Анатолиевич




Оценка: ___________



Запорожье

2002

Реферат


Курсовая работа содержит 35 стр., 3 рис., 1 табл., 12 источников.


Цель работы ― углублённое изучение теории и технологии выплавки специальных сталей и сплавов на основе анализа и обобщения научно-технической литературы и специализированных журналов и изданий.

В данной курсовой работе были рассмотрены следующие вопросы:

  1. Современное состояние и проблемы отечественной и зарубежной металлургической промышленности, а также возможные пути их преодоления и дальнейшего развития отрасли.

  2. Назначение, область применения шарикоподшипниковой стали марки ШХ4, а также сталей аналогичных марок, а также требования, предъявляемые к ним.

  3. Влияние легирующих элементов, вредных примесей, а также состава и вида неметаллических включений на свойства шарикоподшипниковых сталей.

  4. Сделан обзор существующих методов производства шарикоподшипниковых сталей на Украине и за рубежом, а также анализ научно-технической литературы, касающейся данного вопроса.

  5. Рассмотрены способы улучшения существующих технологий производства подшипниковых сталей, а также направления и тенденции в создании новых технологических схем и процессов в отечественной и зарубежной подшипниковой промышленности.

  6. Рассмотрена аппаратурно-технологическая схема производства подшипниковой стали методом вакуумирования жидкой стали с одновременным рафинированием её в столбе шлака, а также проанализирована экономическая эффективность внедрения данной технологии на отечественных металлургических предприятиях.


ШАРИКОПОДШИПНИКОВАЯ СТАЛЬ, ШХ4, ПРОИЗВОДСТВО, ОБРАБОТКА, СВОЙСТВА, ПРИМЕСИ, ВАКУУМ-ШЛАКОВЫЙ ПЕРЕПЛАВ, ЭКОНОМИЧЕСКИЙ ЭФФЕКТ

Содержание



Введение

1. Общие сведения.

    1. Назначение, виды и область применения шарикоподшипниковой стали.

    2. Химический состав шарикоподшипниковых сталей.

    3. Основные технологические и эксплуатационные свойства, влияние на них внешних параметров.

2. Анализ способов выплавки шарикоподшипниковых сталей на Украине, в СНГ и за рубежом.

2.1 Общая характеристика способов выплавки.

2.2 Выплавка в мартеновских печах.

2.3 Выплавка в электродуговых печах.

2.4 Специальные способы выплавки.

3. Аналитический обзор литературы по вопросу технологии, способов выплавки и разливки

шарикоподшипниковой стали за последние годы.

4. Выбор и рекомендации по использованию новых прогрессивных разработок в технологии выплавки

шарикоподшипниковых сталей.

Выводы.

Перечень ссылок.












4

6


6


8


11


16

16

17

19

20



24



31

34

35



Введение



Эксплуатационные свойства большинства машин и механизмов (станков, автомобилей, авиационных двигателей, прокатных станов, точных приборов и др.) в значительной степени зависят от точности, долговечности и надёжности подшипников качения – одного из важнейших и наиболее распространённых элементов этих устройств.

Качество подшипников качения определяется их конструкцией, технологией изготовления и качеством используемого металла. В данной работе рассматриваются вопросы, связанные с качеством металла – т.е. металлургические (способы выплавки и обработки давлением) и металловедческие аспекты технологии получения и обработки подшипниковых сталей и влияния этих факторов на эксплуатационные свойства подшипников качения.[1]

Необходимо учитывать, что металлургическая отрасль как Украины, так и всего мира в последние годы стоит перед очень серьёзной проблемой – превышением мощностями, производящими сталь, мощностей, которые её могут использовать. Вследствие этого многие металлургические предприятия вынуждены тратить огромные средства на исследование и внедрение новых технологий, которые в свою очередь развиваются по трём основным направлениям: снижение себестоимости уже производимой продукции, разработка технологий, позволяющих при неизменной цене производить продукцию более высокого качества, и разработка абсолютно новых видов продукции, способных вытеснить уже имеющиеся на рынке товары своими уникальными свойствами.

Очень серьёзной проблемой для развивающихся стран и для Украины в частности является то, что цены на однотипные товары (готовую сталь, прокат и т.д.), произведённые в развитых капиталистических странах и в странах третьего мира, рознятся иногда в десятки раз. Вследствие этого развитые страны вынуждены закрывать свои рынки от наплыва дешёвого металла из-за рубежа, что может привести к закрытию многих металлургических предприятий если ситуация не изменится. Заводы Украины же в сложившейся ситуации вынуждены продавать металл довольно высокого качества по цене дешёвого металлолома.

Выходу из сложившейся ситуации во многом бы могло поспособствовать правительство, принимая законы:

  • лобирующие интересы крупных промышленных предприятий, как металлургических, так и машиностроительных, так как зачастую последние покупают металл у тех же иностранных предприятий, которые скупают его у отечественных металлургических гигантов. Соответственно необходимо стимулировать на законодательном уровне так называемые сделки в поддержку отечественного производителя, заключаемые без посредников непосредственно между украинскими предприятиями;

  • защищающие интеллектуальную собственность не только путём административных взысканий, но и уголовных наказаний;

  • способствующие увеличению доли бюджета, расходуемой на научные исследования и разработки, а также на поощрения учёным и инженерам их создавшим;

  • делающие механизмы патентования новых разработок более доступными и менее растянутыми как во времени, так и по количеству бюрократических инстанций.

Своевременное и правильное внедрение в жизнь этих задач может служить определяющим фактором на пути развития не только металлургической отрасли, но и всей украинской экономики в целом, так как металлургия на сегодняшний день является одной из основных бюджетонаполняющих отраслей промышленности Украины.



  1. Общие сведения.


    1. Назначение, виды и область применения шарикоподшипниковой стали.


Как видно из названия, шарикоподшипниковую сталь применяют главным образом для изготовления шариков, роликов и колец подшипников.[2] Но номенклатура марок стали данного вида достаточно широка. Это объясняется разнообразием требований к эксплуатационным свойствам подшипников со стороны традиционных, а также новых отраслей промышленности и сельского хозяйства.

Наиболее распространённые подшипниковые высокоуглеродистые стали можно классифицировать следующим образом:

  1. Стали для подшипников, работающих в обычных условиях (хромистая, хромистая с добавкой молибдена, хромомарганцевокремнистая, хромомарганцевая с добавкой молибдена).

  2. Стали для подшипников, работающих в агрессивных средах и при повышенной температуре (коррозионно-стойкая, теплостойкая).[1]

К первым относятся стали марок ШХ15, ШХ15СГ, ШХ20СГ, ШХ4, ШХ6, ШХ9 и т.д.[3] В результате проведенной в 60 г. унификации две последние марки были заменены сталью ШХ15. Названия аналогичных марок в других странах – 52100, 100C6, SKF-24, SUJ2 и т.д.

Ко вторым относят стали марок 95Х18-Ш (где буква «Ш» указывает на то, что сталь выплавлена методом электрошлакового переплава, а вакуумно-дуговой переплав стали электрошлакового переплава обозначается «ШД»), 11Х18М-ШД, ЭИ760, ЭИ347 (8Х4В9Ф2), 8Х4М4ВФ1-Ш, 8DCV40, M50, Z80WDCV6, 80MoCrV4216 и др.

Кроме перечисленных широко применяют низкоуглеродистые цементируемые стали и ограниченно – сплавы с особыми физическими свойствами.

Выбор стали для конкретного подшипника диктуется его размерами и условиями эксплуатации.

Из хромистой и хромомарганцевокремнистой сталей изготовляют подшипники, работающие в интервале температур 60 – 3000С. Эксплуатация подшипников при температуре, превышающей 1000С, требует специальной термической обработки деталей, обеспечивающей стабильность размеров, но сопровождающейся снижением твёрдости, а также сопротивления контактной усталости стали.

Внутри указанного температурного интервала выбор хромистой или хромомарганцевокремнистой стали определяется толщиной стенок колец или диаметром тел качения. Обеспечение сквозной прокаливаемости колец подшипников с толщиной стенки более 10мм и роликов диаметром более 22мм достигается заменой стали ШХ15 сталью ШХ15СГ. Для колец с толщиной стенки более 30мм в отечественной практике используют сталь ШХ20СГ, применяемую для изготовления деталей крупногабаритных подшипников. Граница размеров деталей, выше которой начинается применение стали ШХ20СГ или её аналогов, в разных странах различна. По-видимому, это объясняется различной прокаливаемостью, обусловленной особенностями технологии выплавки стали, а также различными схемами определения толщины стенок колец.[1]

В связи с внедрением прогрессивной технологии термической обработки деталей железнодорожных подшипников качения – поверхностной закалки при глубинном индукционном нагреве – разработана сталь ШХ4 с регламентированной прокаливаемостью. По составу она отличается от стали ШХ15 пониженным содержанием элементов, влияющих на прокаливаемость стали, - марганца, кремния и хрома.[5]

Кроме изготовления деталей подшипников сталь ШХ15, например, также применяется также для производства игл распылителей форсунок, обратных клапанов и подушек впрыскивающих систем, валиков топливных насосов, роликов, осей различных рычагов и других деталей, от которых требуется высокая твёрдость и хорошее сопротивление износу.[4]


    1. Химический состав шарикоподшипниковых сталей.


По составу и свойствам эту сталь можно отнести к группе инструментальных сталей, но по применению она является конструкционной специального назначения.[2]

В таблице 1 приводится химический состав некоторых марок шарикоподшипниковой стали: хромистой, хромомарганцевокремнистой и коррозионностойкой; для сравнения также указаны марки некоторых зарубежных производителей.

Проблема недостаточной прокаливаемости и теплостойкости изделий из хромистой и хромомарганцевокремнистой сталей в ряде стран решена путём создания их модификаций, содержащих небольшие добавки молибдена, ванадия (на немецких предприятиях сортамент выплавляемой стали содержит марку X90CrMoV18, содержащую некоторое его количество) и вольфрама.

В некоторых странах с целью экономии импортируемого хрома разработано несколько модификаций подшипниковой стали, в которых его снижение компенсируется небольшими добавками молибдена с повышенным содержанием марганца.[1]

Высокое содержание углерода в шарикоподшипниковых сталях обуславливает их высокую прочность после термической обработки и стойкость против истирания поверхностная твёрдость определяется концентрацией углерода в мартенсите, поэтому она одинакова для всех шарикоподшипниковых сталей.

Твёрдость внутренних слоёв металла зависит от глубины прокаливаемости, которая в свою очередь зависит от содержания хрома. Хром замедляет превращение аустенита в перлит и тем самым увеличивает прокаливаемость стали, поэтому, чем крупнее детали подшипников, тем с большим содержанием хрома (0,4-1,65%) применяется сталь для их изготовления.

Кроме того, высокая твёрдость карбидов хрома повышает износостойкость стали. Хром увеличивает устойчивость мартенсита против отпуска, уменьшает склонность стали к перегреву и придаёт ей мелкозернистую структуру. Но при высоком содержании хрома (>1.65%) трудно получить однородную структуру, поэтому содержание хрома в шарикоподшипниковых сталях обычно не превышает 1.65%.

Марганец, как и хром, увеличивает твёрдость и сопротивляемость стали истиранию. Но одновременно он способствует росту зерна при нагреве, в результате чего при термической обработке может образовываться крупнозернистая структура перегретой стали. Отрицательное влияние на вязкость шарикоподшипниковой стали оказывает кремний. Но марганец и кремний являются раскислителями, и чем выше их содержание, тем полнее раскислена сталь, поэтому присутствие этих элементов в шарикоподшипниковой стали всех марок желательно не более 0,35%Si и 0,4%Mn. Исключение составляют стали для изготовления деталей крупных подшипников типа ШХ15СГ. Повышенное содержание марганца и кремния в этой стали объясняется тем, что эти элементы уменьшают критическую скорость закалки, снижая тем самым склонность стали к короблению и тещинообразованию при закалке.

Вредными примесями для шарикоподшипниковой стали являются фосфор, медь и никель. Фосфор увеличивает склонность стали к образованию крупнозернистой структуры при нагреве, повышает хрупкость и уменьшает прочность на изгиб, что в свою очередь увеличивает чувствительность стали к динамическим нагрузкам и склонность изделий к появлению закалочных трещин. В связи с этим содержание фосфора в металле ограничивают. Медь, хотя и увеличивает твёрдость, предел прочности и прокаливаемость стали, является нежелательной примесью, так как с повышением содержания меди при горячей механической обработке увеличивается образование поверхностных трещин и надрывов. Содержание никеля ограничивают в связи с тем, что его присутствие снижает твёрдость стали.

Сопротивляемость стали выкрошиванию уменьшают примеси таких цветных металлов, как олово, свинец, мышьяк. Отрицательное воздействие на свойства стали оказывают также газы: кислород образует неметаллические включения, водород увеличивает поражённость флокенами, а азот снижает сопротивляемость выкрошиванию.

Влияние серы на свойства шарикоподшипниковой стали не однозначно. Отрицательное влияние сказывается в снижении устойчивости против истирания и усталостном разрушении при выходе на рабочую поверхность сульфидов. Однако образование сульфидной оболочки вокруг сульфидных включений при достаточном содержании серы уменьшает влияние этих включений на концентрацию напряжений и вследствие этого повышает сопротивление усталости. С увеличением отношения концентраций S/O до 3-5 стойкость подшипников возрастает. Этому способствуют и улучшение качества поверхности вследствие того, что сера улучшает обрабатываемость стали.[2]


1.3 Основные технологические и эксплуатационные свойства, влияние на них внешних параметров.


В большинстве случаев подшипники качения работают при малых динамических нагрузках, что позволяет изготавливать их из сравнительно хрупких высокоуглеродистых сталей после сквозной закалки и низкого отпуска. В некоторых областях применения подшипников от них требуется повышенная динамическая прочность, что заставляет применять высокоотпущенные стали с поверхностной закалкой или цементируемые стали.

Нагрузка, воспринимаемая подшипником качения, передаётся через тела качения – шарики или ролики, разделённые сепаратором. В точках соприкосновения тел качения с кольцами возникают контактные напряжения, вызывающие локальные деформации, в результате которых образуются контактные площадки, в общем случае имеющие форму эллипса, в частных же случаях – это круг или полоска. Давления на контактной площадке, испытываемые деталями подшипника при работе, очень велики и доходят обычно до 200Мпа, а у тяжелонагруженных подшипников – до 4000Мпа. [1]

Очень большое влияние на будущие свойства готовых изделий в подшипниковой промышленности оказывает качество заготовок.

В зависимости от назначения подшипниковая сталь поставляется в виде горячекатаных прутков круглого и квадратного (больших размеров) сечений, в виде горячекатаной полосы, горячекатаных и холоднокатаных труб и крупногабаритных паковок, а также холоднотянутой проволоки в мотках и прутках.

Технические требования к качественным показателям сортового проката из сталей типа ШХ15 и ШХ15СГ (в т. ч. и ШХ4), нормы и методы контроля основных свойств его указаны в ГОСТ 801-68, труб в ГОСТ 800-78, проволоки в ГОСТ 4727-67; к стали ШХ15ШД вакуумно-дугового переплава – в ГОСТ 21022-75.

Кроме того, имеется ещё целый ряд технических условий, содержащих дополнительные требования к качеству полуфабрикатов из стали этих марок, полученных другими методами рафинирующих переплавов или отражающих особенности новых технологических процессов получения заготовок.

Требования, предъявляемые к состоянию поверхности прутков, труб, проволоки подшипниковой стали, предусматривают отсутствие грубых дефектов типа нарушения сплошности или ограничивающие допустимость менее опасных дефектов незначительной глубины. На поверхности прутков не допускаются раскованные и раскатанные загрязнения, пузыри, трещины, корочки, закаты, плены и другие дефекты, возникающие при переделе слитка или промежуточной заготовки.

Несмотря на тщательный контроль на металлургических предприятиях, брак по этим дефектам составляет наибольший процент от общего количества стали, рекламируемой подшипниковыми заводами. Особенно велик этот процент для калиброванной стали.

Не обнаруженные при контроле в прутках и трубах поверхностные дефекты раскрываются в процессе дальнейшей механической обработки, пластической деформации, термической обработки или в процессе эксплуатации подшипников.

К допустимым дефектам на поверхности прутков и труб относятся мелкие отпечатки, рябизна, царапины. Глубина залегания таких дефектов в стандартах дифференцируется в зависимости от диаметра прутков и от состояния поставки.[1]

Повышение суммы легирующих до 5% и выше может быть оправдано только в случаях особых эксплуатационных условий (коррозионная среда, повышенные рабочие температуры и др.), так как оно приводит к увеличению расходов на обрабатываемость и снижению долговечности (рисунок 1) по сравнению с теми же показателями традиционных подшипниковых сталей.

Рисунок 1 – Влияние суммарного содержания легирующих элементов на долговечность подшипниковых сталей.


Изменение содержания составляющих сталь легирующих элементов оказывает различное влияние на свойства подшипников. Добавка молибдена оказывает положительное влияние на долговечность подшипников.

В Японии были испытаны подшипниковые стали типа ШХ15 с содержанием 1-1.5% Si. Долговечность подшипников из этих сталей повышалась, однако они не получили применения из-за плохой обрабатываемости.

Предлагаемая замена стали ШХ15 на сталь с пониженным содержанием хрома (85Cr1Mo) не была осуществлена, несмотря на более короткое время отжига, из-за пониженной (8 мм) прокаливаемости. Эту сталь целесообразно применять там, где требуется улучшенная деформируемость в холодном состоянии.

Многими авторами было доказано благоприятное влияние повышенного содержания серы (до 0,15%) на долговечность и обрабатываемость подшипниковых сталей, хотя стали с таким содержанием серы пока не применяются.

В подшипниковых сталях, полученных по обычной технологии, содержится около 0,005% О2, 0,01-0,02% N2, 0,0001-0,0005% Н2. Кислород находится в виде окислов и его количество зависит от технологии раскисления. При вакуумировании содержание кислорода уменьшается до 0,002%, а при ВДП – до 0,001%.

Водород отрицательно влияет на качество стали ввиду того, что снижение растворимости его при снижении температуры металла вызывает повышенные локальные давления в металле, приводящие к образованию флокенов.

При исследовании подшипниковых сталей отечественных и зарубежных фирм было установлено отрицательное влияние повышенных содержаний азота и суммы азота и кислорода на долговечность подшипников.

Микропористость может приводить к образованию питтинга и снижению долговечности подшипника.

Неметаллические включения в подшипниковых сталях являются концентраторами напряжений и могут в некоторых случаях являться причиной появления микротрещин, образующихся от повышенной концентрации мозаичных напряжений, резкого охлаждения при закалке и др.[6] в общем же случае стараются, чтобы неметаллические включения имели глобулярную форму. Наиболее пагубное воздействие на качество подшипников оказывают включения оксидов и нитридов алюминия.

В настоящее время наиболее полно удовлетворяют требованиям по содержанию вредных включений стали, произведённые методами ЭШП и ВДП. Однако этот металл слишком дорогой и, кроме того, не установлены экономически целесообразные требования по чистоте металла.
























2. Анализ способов выплавки шарикоподшипниковых сталей на Украине, в СНГ и за рубежом.



2.1 Общая характеристика способов выплавки.


Наиболее распространёнными способами производства шарикоподшипниковых сталей являются: основной мартеновский, кислый мартеновский и электродуговой. Последний, по данным С.С. Штейнберга, был признан наиболее совершенным. Полагали, что в электропечи может быть выплавлен первосортный металл даже из относительно загрязнённых серой и фосфором материалов. Поэтому на заводах, на которых исходные материалы загрязнены серой и фосфором выше нормы, единственным агрегатом для выплавки первосортной стали была признана электропечь.

Там же, где возможно получение чистых по сере и фосфору чугунов, равноценным агрегатом была признана кислая мартеновская печь.

В настоящее время в странах СНГ почти 90% подшипниковой стали массового назначения выплавляется в электродуговых печах и около 10% в кислых мартеновских печах.

Как в случае выплавки в электропечи, так и в случае мартеновской плавки возможно применение обработки металла в ковше синтетическими известково-глинозёмистыми шлаками.

Другим направлением, по которому совершенствовалось качество отечественной подшипниковой стали, являлась технология рафинирующих переплавов – вакуумно-дугового, электрошлакового, плазменного и электроннолучевого. Рафинирующие переплавы являются очень эффективными: благодаря принципиальному изменению процесса кристаллизации стали увеличилась плотность слитка, снизилось общее содержание газов, примесей, неметаллических включений и уменьшились размеры последних в слитке.

Новым направлением, развиваемым в последние годы в отечественной промышленности при выплавке стали в открытых дуговых электропечах, явилось внепечное вакуумирование в ковше, в установках циркуляционного или порционного вакуумирования, вакуум-шлаковой обработки (УВСШ).

За рубежом совершенствование процесса производства стали для подшипников массового и, частично, специального применения пошло по пути внепечного вакуумирования. Сталь для особо ответственных подшипников выплавляют методами вакуумной индукционной выплавки, вакуумно-дугового переплава, электроннолучевой плавки, плазменного и электрошлакового переплава.


2.2 Выплавка в мартеновских печах.


Весьма ограниченный объём производства кислых мартеновских сталей типа ШХ15 (в т.ч. и ШХ4) в СНГ и за рубежом объясняется особенностями её производства: топливо и шихтовые материалы при кислом процессе должны иметь низкое содержание серы и фосфора, так как эти элементы при выплавке не удаляются из стали.

При отсутствии чистых руд возможен вариант, когда сначала выплавляют специальную заготовку в основных мартеновских печах, а затем переплавляют её в кислых. Несмотря на высокие эксплуатационные свойства получаемой стали, этот процесс является экономически не выгодным.

В кислой печи шарикоподшипниковую сталь можно выплавлять активным или кремневосстановительным процессом. Если по мере расплавления в печь не вводят никаких добавок, то по мере повышения температуры металла шлак насыщается кремнезёмом вследствие окисления кремния, восстанавливающегося из подины. Вязкость шлака увеличивается, а скорость перехода кислорода из атмосферы печи через шлак снижается. На определённой стадии плавки начинает превалировать процесс восстановления кремния, увеличивается его концентрация в металле. Этот процесс называют кремневосстановительным. Таким способом производят подшипниковую сталь на заводах фирмы SKF в Хеллефорсе. Выплавку ведут в кислых мартеновских печах ёмкостью 30-120т. Футеровку этих печей выполняют из чистых силикатных материалов, содержащих около 97% SiO2. шихту составляют из жидкого чугуна (50%), губчатого железа (30%), и отходов подшипниковой стали (20%). Содержание серы и фосфора в стальной ванне после расплавления низкое, что объясняется, прежде всего, очень высокой чистотой добываемой железной руды, из которой изготавливаются губчатое железо и чугун. Окисление осуществляется кислородом. Ни в печь до выпуска, ни в ковш во время выпуска не добавляются ни силикокальций, ни алюминий.

В СНГ выплавку шарикоподшипниковых сталей в кислых мартеновских электропечах осуществляют активным процессом в печах ёмкостью 90 т.

Активный процесс характеризуется тем, что руду, известь (или известняк) вводят по ходу плавки. Это повышает жидкоподвижность шлака, ограничивает восстановление кремния и увеличивает его окислительную способность. Происходит интенсивное кипение, содержание кремния не превышает 0,10-0,12%. В качестве шихтовых материалов используются чистый по сере и фосфору чугун, специальная шихтовая болванка и до 10% от садки собственные отходы шариковой стали.

Специальная болванка выплавляется в основных мартеновских печах. В материале её содержится до 0,015%S и до 0,017%P.

Окончательное раскисление поводят в печи силикокальцием (1,26кг/т) и кусковым алюминием (0,4 кг/т), присадку раскислителей заканчивают до появления шлака.

В последние годы находит применение также активный процесс с последующей обработкой металла в ковше синтетическим известково-глинозёмистым шлаком следующего состава: 52-55% CaO, 38-42% Al2O3, до 3% SiO2, до 0.5% FeO, до 1.5% TiO2.

2.3 Выплавка в электродуговых печах.


Подшипниковую сталь выплавляют по двум технологическим схемам – с обработкой печным шлаком и с обработкой металла в ковше высокоглинозёмистым синтетическим шлаком, получаемым в отдельной печи.

В зависимости от применяемой шихты по обоим технологическим вариантам выплавка может производиться методом переплава или на свежей шихте. При выплавке стали методом переплава с обработкой печным шлаком используются от 70 до 100% отходов подшипниковых сталей. Окончательное раскисление проводят печным кусковым алюминием путём присадки его в печь за 5 минут до выпуска (0,5 кт/т стали). При выплавке на свежей шихте с обработкой печным шлаком используют углеродистый лом (74-77%), чугун (18-21%), и отходы подшипниковой стали (4,5%). Окончательное раскисление металла производят первичным алюминием в количестве 0,5 кг/т в ковш и 0,5 кг/т в ковш.

Высокоглинозёмистым синтетическим шлаком может обрабатываться сталь, выплавленная как на свежей шихте, так и методом переплава. Физико-химические процессы, протекающие в ковше при взаимодействии жидкой стали с жидкими известково-глинозёмистыми синтетическими шлаками, в основном сводятся к тому, что при сливе жидкого металла с достаточно большой высоты в ковш происходит их интенсивное перемешивание и взаимное эмульгирование. Поверхность контакта металла и шлака при их взаимном эмульгировании чрезвычайно увеличена по сравнению с обычным способом рафинирования металла в печи.

В последние годы исследования направлены на снижение основности рафинировочного шлака. Применение шлаков пониженной основности, полукислых и кислых шлаков продиктовано стремлением приблизить состав включений в основной электродуговой стали к составу их в кислой мартеновской или кислой индукционной сталях.

При таких процессах должно снижаться число крупных глобулярных включений, но повышаться число сульфидных и, возможно, силикатных включений. При рафинировании стали кислыми шлаками превалирующим видом кислородных включений становятся тонкие строчки мелких зёрен корунда.


2.4 Специальные способы выплавки.


Выплавка смешением в ковше жидких расплавов.


Особенностью той технологии является одновременное комплексное использование трёх металлургических агрегатов: основной мартеновской печи, в которой выплавляют железоуглеродистый полупродукт; дуговой электропечи для выплавки жидкой лигатуры; шлакоплавильной электропечи для выплавки синтетического шлака.

Получение стали осуществляется путём смешения в сталеразливочном ковше железоуглеродистого полуфабриката и жидкой лигатуры в процессе рафинирования расплавов синтетическим шлаком и продувкой аргоном.

Предпосылки повышения качества и эксплуатационных свойств стали, полученной по технологии смешения с продувкой металла в ковше аргоном по сравнению с обычной электросталью, основаны на следующих теоретических положениях и экспериментально установленных фактах:

а) улучшаются условия раскисления и легирования стали в ковше;

б) в процессе раскисления участвуют не только алюминий и кремний, но и углерод, образующий газообразные продукты реакций и обладающий при выбранной технологии смешения раскислительной способностью на порядок выше кремния;

в) равномерно распределены легирующие элементы в объёме ковша;

г) в качестве объекта раскисления использован железоуглеродистый расплав требуемой и легко регулируемой окисленности.


Вакуумная плавка, переплав и вакуумная дегазация стали.


Применяется несколько разновидностей вакуумной обработки подшипниковой стали.


Случайные файлы

Файл
21078-1.rtf
27549.rtf
142420.rtf
118817.rtf
15619-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.