Экзамен 2013 года (Билет №21)

Посмотреть архив целиком

Вопрос 24: Сложное движение точки. Ускорение Кориолиса. Правило Жуковского.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Положение точки М в подвижной системе координат O'XYZ характеризует радиус-вектор с началом в точке О'.

Кинематическая теорема Кориолиса: абсолютное ускорение точки является векторной суммой трех ускорений - относительного, переносного и ускорения Кориолиса.

Ускорение Кориолиса равно удвоенному векторному произведению угловой скорости переносного движения на относительную скорость точки: , следовательно по модулю ускорение Кориолиса: .

Кориолисово ускорение обращается в нуль, когда:

1) переносное движение - поступательное, т.е. омега переносное равно нулю;

2) в те моменты времени, когда в относительном движении точка останавливается, например. при изменении направления относительного движения.

Частные случаи:

А) ω0 – смена знака

Б) vr0 – относительный покой (смена знака движения).

В) sin(ω,vr)0, ω||vr.

Правило Жуковского: Кориолисово ускорение можно получить, спроецировав вектор радиальной скорости на плоскость, перпендикулярную вектору омега переносное, увеличив полученную проекцию радиальной скорости в 2*(омега переносное) раз и повернув ее на 90 градусов в направлении переносного вращения.


Вопрос 37: Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)=BA×R=BA×(F1+F2)=BA×F1+BA×F2. При переносе сил вдоль линии действия момент пары не меняется BA×F1=M1, BA×F2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F1, F1’), (F2, F2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары: (Q1,Q1’) и (Q2,Q2’). При этом M1=M(Q1,Q1’)=M(F1, F1’), M2=M(Q2,Q2’)=M(F2, F2’).

Сложим силы R=Q1+Q2, R=Q1’+Q2’. Т. к. Q1’= - Q1, Q2’= - Q2 R= -R’. Доказано, что система двух пар эквивалентна системе (R,R’). M(R,R’)=BA×R=BA×(Q1+Q2)= BA×Q1+BA×Q2=M(Q1,Q1’)+ M(Q2,Q2’)=M(F1,F1’)+ M(F2,F2’) M=M1+M2.

УСЛОВИЯ РАВНОВЕСИЯ: Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю. То есть: M1+ M2+…+ Mn=0.


Вопрос 39: Теорема о приведении произвольной системы сил к силе и паре сил - основная теорема статики.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO= F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).

При приведении системы сил к заданому центру возникает главный вектор R равный сумме всех сил и главный момент Мо, равный сумме моментов всех сил относительно центра приведения.


Случайные файлы

Файл
10248-1.rtf
56983.rtf
176147.rtf
88691.doc
28493.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.