Экзамен 2013 года (Билет №29)

Посмотреть архив целиком

Вопрос 19: Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.

VA=ω×rA. Пусть точка М лежит на мгновенной оси вращения.

i j k

VM=ω×rM= ωx ωy ωz

XM YM ZM

X/ωx=Y/ωy=Z/ωz – мгновенная ось вращения.

aA=dv/dt=dω/dt×rA+ω×drA/dt=ε×rA+ω×vA=aAвр+aAос.

aAвр= ε×rA – вращательное ускорение точки.

aAос= ω×vA – осестремительное ускорение точки.

Формула Ривальса: aAoc=ωvAsin(ω, vA). aвр направлен перпендикулярно плоскости (ε,r) в сторону, откуда переход от ε к r виден против часовой стрелки.

aвр направлен по перпендикуляру к плоскости (ω,v).

Скорости точек тела пропорциональны расстояниям от этих точек до мгновенной оси.


Вопрос 33: Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.

Момент силы F относительно оси z равен проекции на эту ось вектора момента силы F относительно произвольной точки О на этой оси.

Доказательство:

Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ

MO(F)┴(OAB). Пусть угол между MO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔOAB= 2SΔOABcosα => Mz(F) = |MO(F)|cosα.

Ч.т.д.


2*S(OA'B') = 2*S(OAB)*cosα

| Moz(F) | = | Mo(F) |*cosα

MCOO = проекции на эту ось векторному МСОТ



Случайные файлы

Файл
4225.rtf
3318.rtf
submarine.doc
22587.rtf
148008.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.