Экзамен 2013 года (Билет №19)

Посмотреть архив целиком

Вопрос 23: Сложное движение точки. Скорости и ускорения точки при сложном движении.

Сложное движение – движение по отношению к системе координат, выбранной за основную (абсолютную).

Относительное движение – движение точки по отношению к подвижной системе координат.

Переносное движение – движение подвижной системы координат относительно неподвижной. Установление связи между этими движениями позволяет решать различные задачи.

Положение точки М в подвижной системе координат O'XYZ характеризует радиус-вектор с началом в точке О'.

Скорость движения точки М по отношению к осям подвижной системы координат называется относительной скоростью и обозначается Vr. Вектор Vr определяет скорость изменения с течением времени радиус-векторав подвижной системе O'XYZ и поэтому выражается его относительной, или локальной, производной по времени,

ρ = r0 + r

dp/dt = d(r0+r)/dt = dr0/dt + dr/dt

dp/dt = v0 + dr/dt + ω*r = v0 + vr + ω*r

v = v0 + ω*r + vr = ve + vr


Вопрос 49: Центр тяжести тела. Методы нахождения центра тяжести.

Центр тяжести – центр системы параллельных сил тяжести частиц тела. Его радиус-вектор rC=∑Piri/P.

XC=∑Pixi/P; Yc=∑Piyi/P; ZC=∑Pizi/P

Вес тела P=∑Pi, Pi – сила тяжести частицы.

Методы определения координат центра тяжести тела.

  1. Свойства симметрии: если тело имеет плоскость, ось или центр симметрии, то центр тяжести лежит на них.

  1. Разбиение: Если известны центры тяжести отдельных частей тела, то

rC=(V1rC1+V2rC2+…+VnrCn)/V

Отрицательные массы:

rC=VсплrC-V1rC1-…-VnrCn, где Vk, rCk – объемы и радиус-векторы пустот тела.


  1. Интегрирование: если тело нельзя разбить)

XC=(∫xdV)/V, YC=(∫ydV)/V,

ZC=(∫zdV)/V

Когда тело нельзя разбить на составные части, центры тяжести которых известны, используют метод интегрирования, являющийся универсальным.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.