Основные этапы эволюционного развития ЦНС (92710)

Посмотреть архив целиком

Пермский гуманитарно-технологический институт

Гуманитарный факультет












КОНТРОЛЬНАЯ РАБОТА


по дисциплине «АНАТОМИЯ ЦНС»

на тему

«Основные этапы эволюционного развития ЦНС»











Пермь, 2007


Этапы развития центральной нервной системы


Появление многоклеточных организмов явилось первичным стимулом для дифференциации систем связи, которые обеспечивают целостность реакций организма, взаимодействие между его тканями и органами. Это взаимодействие может осуществляться как гуморальным путем посредством поступления гормонов и продуктов метаболизма в кровь, лимфу и тканевую жидкость, так и за счет функции нервной системы, которая обеспечивает быструю передачу возбуждения, адресованного к вполне определенным мишеням.


Нервная система беспозвоночных животных


Нервная система как специализированная система интеграции на пути структурного и функционального развития проходит через несколько этапов, которые у первично- и вторичноротых животных могут характеризоваться чертами параллелизма и филогенетической пластичностью выбора.

Среди беспозвоночных наиболее примитивный тип нервной системы в виде диффузной нервной сети встречается у типа кишечнополостных. Их нервная сеть представляет собой скопление мультиполярных и биполярных нейронов, отростки которых могут перекрещиваться, прилегать друг к другу и лишены функциональной дифференциации на аксоны и дендриты. Диффузная нервная сеть не разделена на центральный и периферический отделы и может быть локализована в эктодерме и энтодерме.

Эпидермальные нервные сплетения, напоминающие нервные сети кишечнополостных, могут быть обнаружены и у более высоко организованных беспозвоночных (плоские и кольчатые черви), однако здесь они занимают соподчиненное положение по отношению к центральной нервной системе (ЦНС), которая выделяется как самостоятельный отдел.

В качестве примера такой централизации и концентрации нервных элементов можно привести ортогональную нервную систему плоских червей. Ортогон высших турбеллярий представляет собой упорядоченную структуру, которая состоит из ассоциативных и двигательных клеток, формирующих вместе несколько пар продольных тяжей, или стволов, соединенных большим числом поперечных и кольцевых комиссуральных стволов. Концентрация нервных элементов сопровождается их погружением в глубь тела.

Плоские черви являются билатерально симметричными животными с четко выраженной продольной осью тела. Движение у свободноживущих форм осуществляется преимущественно в сторону головного конца, где концентрируются рецепторы, сигнализирующие о приближении источника раздражения. К числу таких рецепторов турбеллярий относятся пигментные глазки, обонятельные ямки, статоцист, чувствительные клетки покровов, наличие которых способствует концентрации нервной ткани на переднем конце тела. Этот процесс приводит к формированию головного ганглия, который, по меткому выражению Ч. Шеррингтона, можно рассматривать как ганглиозную надстройку над системами рецепции на расстоянии.

Ганглионизация нервных элементов получает дальнейшее развитие у высших беспозвоночных, кольчатых червей, моллюсков и членистоногих. У большинства кольчатых червей брюшные стволы ганглионизированы таким образом, что в каждом сегменте тела формируется по одной паре ганглиев, соединенных коннективами с другой парой, расположенной в соседнем сегменте.

Ганглии одного сегмента у примитивных аннелид соединены между собой поперечными комиссурами, и это приводит к образованию лестничной нервной системы,. В более продвинутых отрядах кольчатых червей наблюдается тенденция к сближению брюшных стволов вплоть до полного слияния ганглиев правой и левой сторон и перехода от лестничной к цепочечной нервной системе. Идентичный, цепочечный тип строения нервной системы существует и у членистоногих с различной выраженностью концентрации нервных элементов, которая может осуществляться не только за счет слияния соседних ганглиев одного сегмента, но и при слиянии последовательных ганглиев различных сегментов.

Эволюция нервной системы беспозвоночных идет не только по пути концентрации нервных элементов, но и в направлении усложнения структурных взаимоотношений в пределах ганглиев. Не случайно в современной литературе отмечается тенденция сравнивать брюшную нервную цепочку со спинным мозгом позвоночных животных. Как и в спинном мозгу, в ганглиях обнаруживается поверхностное расположение проводящих путей, дифференциация нейропиля на моторную, чувствительную и ассоциативные области. Это сходство, являющееся примером параллелизма в эволюции тканевых структур, не исключает, однако, своеобразия анатомической организации. Так, например, расположение туловищного мозга кольчатых червей и членистоногих на брюшной стороне тела обусловило локализацию моторного нейропиля на дорсальной стороне ганглия, а не на вентральной, как это имеет место у позвоночных животных.

Процесс ганглионизации у беспозвоночных может привести к формированию нервной системы разбросанно-узлового типа, которая встречается у моллюсков. В пределах этого многочисленного типа имеются филогенетически примитивные формы с нервной системой, сопоставимой с ортогоном плоских червей (боконервные моллюски), и продвинутые классы (головоногие моллюски), у которых слившиеся ганглии формируют дифференцированный на отделы мозг.

Прогрессивное развитие мозга у головоногих моллюсков и насекомых создает предпосылку для возникновения своеобразной иерархии командных систем управления поведением. Низший уровень интеграции в сегментарных ганглиях насекомых и в подглоточной массе мозга моллюсков служит основой для автономной деятельности и координации элементарных двигательных актов. В то же время мозг представляет собой следующий, более высокий уровень интеграции, где могут осуществляться межанализаторный синтез и оценка биологической значимости информации. На основе этих процессов формируются нисходящие команды, обеспечивающие вариантность запуска нейронов сегментарных центров. Очевидно, взаимодействие двух уровней интеграции лежит в основе пластичности поведения высших беспозвоночных, включающего врожденные и приобретенные реакции.

В целом, говоря об эволюции нервной системы беспозвоночных, было бы упрощением представлять ее как линейный процесс. Факты, полученные в нейроонтогенетических исследованиях беспозвоночных, позволяют допустить множественное (полигенетическое) происхождение нервной ткани беспозвоночных. Следовательно, эволюция нервной системы беспозвоночных могла идти широким фронтом от нескольких источников с изначальным многообразием.

На ранних этапах филогенетического развития сформировался второй ствол эволюционного древа, который дал начало иглокожим и хордовым. Основным критерием для выделения типа хордовых является наличие хорды, глоточных жаберных щелей и дорсального нервного тяжа — нервной трубки, представляющей собой производное наружного зародышевого листка — эктодермы. Трубчатый тип нервной системы позвоночных по основным принципам организации отличен от ганглионарного или узлового типа нервной системы высших беспозвоночных.


Нервная система позвоночных животных


Нервная система позвоночных закладывается в виде сплошной нервной трубки, которая в процессе онто- и филогенеза дифференцируется на различные отделы и является также источником периферических симпатических и парасимпатических нервных узлов. У наиболее древних хордовых (бесчерепных) головной мозг отсутствует и нервная трубка представлена в малодифференцированном состоянии.

Согласно представлениям Л. А. Орбели, С. Херрика, А. И. Карамяна, этот критический этап развития центральной нервной системы обозначается как спинальный. Нервная трубка современного бесчерепного (ланцетника), как и спинной мозг более высоко организованных позвоночных, имеет метамерное строение и состоит из 62—64 сегментов, в центре которых проходит спинно-мозговой канал. От каждого сегмента отходят брюшные (двигательные) и спинные (чувствительные) корешки, которые не образуют смешанных нервов, а идут в виде отдельных стволов. В головных и хвостовых отделах нервной трубки локализованы гигантские клетки Родэ, толстые аксоны которых образуют проводниковый аппарат. С клетками Родэ связаны светочувствительные глазки Гесса, возбуждение которых вызывает отрицательный фототаксис.

В головной части нервной трубки ланцетника находятся крупные ганглиозные клетки Овсянникова, имеющие синаптические контакты с биполярными чувствительными клетками обонятельной ямки. В последнее время в головной части нервной трубки идентифицированы нейросекреторные клетки, напоминающие гипофизарную систему высших позвоночных. Однако анализ восприятия и простых форм обучения ланцетника показывает, что на данном этапе развития ЦНС функционирует по принципу эквипотенциальности, и утверждение о специфике головного отдела нервной трубки не имеет достаточных оснований.

В ходе дальнейшей эволюции наблюдается перемещение некоторых функций и систем интеграции из спинного мозга в головной — процесс энцефализации, который был рассмотрен на примере беспозвоночных животных. В период филогенетического развития от уровня бесчерепных до уровня круглоротых формируется головной мозг как надстройка над системами дистантной рецепции.

Исследование ЦНС современных круглоротых показывает, что их головной мозг в зачаточном состоянии содержит все основные структурные элементы. Развитие вестибулолатеральной системы, связанной с полукружными каналами и рецепторами боковой линии, возникновение ядер блуждающего нерва и дыхательного центра создают основу для формирования заднего мозга. Задний мозг миноги включает продолговатый мозг и мозжечок в виде небольших выпячиваний нервной трубки.


Случайные файлы

Файл
144358.rtf
138414.rtf
28698.rtf
20718-1.rtf
65234.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.