Шпора к экзамену (Шпора к экзамену)

Посмотреть архив целиком

Развитие представлений о строении атома. Модель атома Резерфорда. Теория Н. Бора. Уравнение волны Л. Де Бройля. Принцип неопределенности Гейзенберга. Квантовомеханичекая теория строения атома. Квантовые числа. Волновая функция


Наличие в атоме массивного, но малого по размерам (по сравнению с атомом) положительного электрического заряда – ядра.(~10-12 см, размер атома 10-8см). Исходя из этого Резерфорд построил планетарную модель атома (в центре атома находится положительно заряженное массивное ядро, а легкие отрицательные заряды (электроны) вращаются по различным орбиталям вокруг этого ядра.)


Первый постулат Бора: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия. В стационарных состояниях атом не излучает. Второй постулат: При переходе атома из одного стационарного состояния в другое, излучается или поглощается квант с энергией, равной разности энергий этих состояний.


Де Бройль предположил, что двойственной природой обладает не только свет, но и любой мат. объект. Длина волны любого движущегося объекта: . В случае наблюдения за объектами микромира: воздействие на них фотона (для определения координаты), ее скорость меняется.


Принцип Гейзенберга: Невозможно одновременно точно определить координаты частицы и ее импульс. (аналогично y, z). Где дельты – погрешность определения координат, погрешность определения проекций импульса на оси координат. Для волн Де Бройля: , где вторая пси-амплитуда волн Де Бройля (координатная волновая функция).


Квантовомеханичекая теория строения атома. Уравнение Шредингера. Волновая функция. Квантовые числа. Формы s -, р -, d - атомных орбиталей.


Квантово-механическая модель атома не обладает наглядностью. Законы движения частиц в квантовой механике выражаются уравнением Шредингера. Уравнение, связывающее энергию системы с ее волновым движением. Стационарное уравнение Шредингера для одной частицы: , где U – пот. энергия частицы, E – ее полная энергия. -вероятность нахождения частицы в данном месте пространства. Для волн Де Бройля: , где вторая пси-амплитуда волн Де Бройля (координатная волновая функция).

В квантовой механике каждая АО характеризуется 3-мя квантовыми числами. Главное квантовое число n может принимать целочисленные значения от 1 до бесконечности. Оно определяет номер энергетического уровня, интервал энергий электронов, находящихся на данном уровне, размеры орбиталей, число подуровней данного энергетического уровня, в ПСЭ max значению n соответствует номер периода. Орбитальное квантовое число l определяет орбитальный момент количества движения (импульс) электрона, точное значение его энергии и форму орбиталей. Может принимать целочисленные значении от 0…n-1. Каждому численному значению l соответствует определенная геометрическая форма орбиталей и приписывается буквенное обозначение (s, p, d, f). Магнитное квантовое число m определяет возможные значения проекции орбитального момента количества движения электрона на фиксированное направление в пространстве. Принимает отрицательные и положительные значения l, включая 0. Общее число значений = 2l+1. От значения m зависит взаимодействие магнитного поля, создаваемого электроном, с внешним магнитным полем. В общем случае m характеризует ориентацию АО в пространстве относительно внешней силы. Общее число возможных значений m соотв. числу способов расположения орбиталей данного подуровня в пространстве, т.е. общему числу орбиталей на данном подуровне.

S-орбитали имеют форму сферы(характеризуются l=0, m=0), P-орбитали – гантели(объемные восьмерки) – l=1, m=-1,0,1. (3 АО, расположенных вдоль осей координат). d-подуровень – l=2, m=-2,-1,0,1,2. 5АО, dxy,dxz,dyz,dx*2-y*2, dz*2.

Собственный момент импульса электрона – спин. Может принимать только значение = ½. Проекция вектора спина на опред. направление внешнего поля наз. спиновым квантовым числом, ms=+-1/2. Спин – проявление релятивистских эффектов на микроскопическом уровне.


Строение многоэлектронных атомов. Принцип наименьшей энергии. Принцип Паули. Правило Хунда. Правило Клечковского. Электронные и электроно - графические формулы атомов элементов в основном и возбужденных состояниях.


В многоэлектронных атомах, как и в атоме водорода, состояние каждого электрона можно характеризовать квантовыми числами. Межэлектронное отталкивание приводит к тому, что энергия электронов, имеющих одно и то же значение n, но разные значения l, становится различной. Последовательность заполнения е подуровней определяется принципом наименьшей энергии, принципом Паули и правилом Хунда.

Принцип наименьшей энергии: заполнение электронами АО происходит в порядке возрастания их энергии. Установлена энергетическая диаграмма для различных АО в много-е нейтральных атомов, находящихся в основном состоянии(с наименьшей энергией). Правило Клечковского: энергия АО возрастает в соотв. с увеличением n+l. При одинаковом значении суммы энергия меньше у АО с меньшим значением n.

Принцип Паули: в атоме не м.б. 2 е с одинаковым значением 4х квантовых чисел. Этот набор значений полностью определяет энергетическое состояние е. 2 е, находящихся на одной АО называются спаренными. Общее число орбиталей на эн. уроне со зн. n = n*2. Следовательно, max электронная емкость = 2n*2.

Правило Хунда определяет последовательность заполнения АО е в пределах одного подуровня и гласит: При данном значении l (в пределах 1 подуровня) в основном состоянии электроны располагаются т.о., что значение суммарного спина атома max(на подуровне должно быть max число неспаренных e).

Распределение е по разл. АО называют е конфигурацией атома. Эл. конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям. ЭК атома изображают 2мя способами: в виде е формул и е-графических диаграмм. При написании е формул используют n и l. Подуровень обозначают с помощью n и l(буквой). Число е на подуровне характеризует верхний индекс. Например, для основного состояния атома водорода: В случае е-графических диаграмм распределение е по подуровням представляют в виде квантовых ячеек. Орбиталь принято изображать квадратом, около кот. проставлено обозн. подуровня. Подуровни на каждом уровне д.б. немного смещены по высоте (энергия различна). Электроны изображаются против. стрелками в завис. от значения спина.С учетом структуры ЭК атомов все известные Эл. в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на 4 группы: s, p, d и f-элементы.

Отклонения от правила n+l наблюдаются у нек. элементов – это связано с тем, что с увеличением главного квантового числа различия между энергиями подуровней уменьшаются.


Ковалентная связь. Механизм ее образования(обменй и донорно-акцепторный) Метод валентных связей. Гибридизация атомных орбиталей. Полярность связи. Электрический момент связи и молекулы. Геометрическая форма молекул.

Ковалентная связь – связь, осуществляемая за счет образования е пар, принадлежащих обоим атомам. Различают полярную и неполярную. В случае полярной: в чистом виде может возникать только между одинаковыми атомами за счет объединения е с различными спинами в е пары. Ковалентная полярная связь возникает между атомами разных элементов, обладающих различной е-отрицательностью. При этом МО искажаются, т.к. е смещаются к более е-отр. Э (и при сохраняющейся е нейтральности молекулы, в ней появляются центры положительных и отрицательных зарядов, молекула становится диполем). . Способ образования ковалентной связи, когда каждый атом отдает по 1 е для образования общей е пары называется обменным.

Донорно-акцепторный тип ковалентной связи – Один атом предоставляет пару е, другой – свободную орбиталь.(нередко превышает число неспаренных е в его атомах…). Донорно-акцепторный механизм образования связи отличается от обменного только происхождением общей е пары, во всем остальном оба эти механизма тождественны. Часто один и тот же атом может выступать как в роли донора, таки в роли акцептора е. Механизм образования связи между такими атомами называют дативным.

МВС базируется на: каждая пара ат. в молекуле удерживается вместе при помощи одной или нескольких общих е пар; одинарная ков. связь 2-мя электронами с антипараллельными спинами, расп. на валентных орбиталях связывающихся атомов; при образовании связи происходит перекрывание волновых функций электронов, ведущее к увеличению е плотности между ат. и уменьшению общей Е системы; связь образуется в том направлении, при котором возможно максимальное перекрывание волновых функций; угол между связями в молекуле соответствует углу между образующими связь электронными облаками; из 2х орбиталей атома более прочную связь образует та, которая сильнее перекрывается орбиталью др. атома.

Геометрическая форма молекул зависит от направленности хим. связи. Атомы, у которых валентные е расположены на s АО, способны образовывать одинаково прочные связи в любых направлениях. Общее е облако в таких случаях сосредоточено вдоль линии связи (-связь). Для p-АО макс. перекрещивание возможно и по линии связи ядер, и по обе стороны от нее(-связь). Для d-орбиталей возможно , , δ-связь.

Гибридизация валентных орбиталей: при образовании хим. связей исходные атомные орбитали смешиваются, взаимно изменяются, образуя равноценные гибридные орбитали, которые отличаются от АО значительным увеличением электронной плотности в определенном направлении пространства.

sp-ГО являются диагональными О, т.е. угол между ними = 180. sp2-ГО (тригональные) расположены под углом 120. При sp3 гибридизации образуется 4 тетрагональные ГО, направленные к вершинам тетраэдра. 109,28’.(109,5)

sp-прямая линия, sp2, dp2, sd2 – треугольник, pd2-тригональная пирамида, sp3-тетраэдр, dsp2-квадрат, sp3dz*2 – тригональная бипирамида, sp3dx*2-y*2 – квадратная пирамида, sp3d2-октаэдр.

Образование комплексных соединений: донорно-акцепторный механизм взаимодействия комплексообразователя и лигандов. Комплексообразователь выступает в роли акцептора, а лиганд – в роли донора е. Геом. форма комплексных частиц определяется типом гибридизации АО комплексообразователя. Прием *ГВО* основан на принципе максимального перекрывания е облаков и содержит условия устойчивой гибридизации орбиталей: в гибридизации участвуют орбитали с близкими значениями энергии, т.е. s- и p-АО внешнего и d-АО внешнего и предвнешнего ЭУ и с дост. выс. е плотн. ГО должны быть ориент. и выт. в пр-ве так, чтобы Е их отталк. была миним., а перекр. с орб. соседн. ат. наиб. полно. Учитывается, что ГО вследств. их асимметрии в образовании -связей участвовать не могут.

Теория отталкивания е пар валентных орбиталей: конфигурация связей многовал. ат. обуславливается числом связывающих и несвязывающих е пар в валентной оболочке центрального атома; ориентация облаков е пар вал. орб. опред. макс. взаимн. отталкиванием заполняющих их е. Теория ОЭПВО построена на след. допущ.: 1) неразличимости е, 2) действия кулоновских Сид, 3)действия сил отталквивания Паули.


Химическая связь. Зависимость потенциальной энергии от межъядерного расстояния в двухатомной молекуле. Виды химической связи. Основные характеристики химической связи: длина, энергия, кратность связи, валентный угол. Водородная связь.


Химическая связь – совокупность взаимодействий атомов, приводящая к образованию устойчивых систем (молекул, комплексов, кристаллов.). Она возникает, если в результате перекрывания е облаков атомов происходит уменьшение полной энергии системы. Мерой прочности служит энергия связи, которая определяется работой, нужной для разрушения данной связи.

Виды хим. связи: ковалентная (полярная, неполярная, обменная и донорно-акцепторная), ионная, водородная и металлическая.

Длина связи – расстояние между центрами атомов в молекуле. Энергия и длина связей зависят от характера распределения Эл. плотности между атомами. На распределение е плотности влияет пространственная направленность хим. связи. Если 2-х атомные молекулы всегда линейны, то формы многоатомных молекул м.б. различны.

Угол между воображаемыми линиями, которые можно провести через центры связанных атомов называется валентным. Распределение е плотности так же зависит от размеров ат. и их эо. В гомоатомных Эл. плотность распределена равномерно. В гетероатомных смещена в том направлении, которое способствует уменьшению энергии системы.


Между молекулами, валентно-насыщенными в обычном понимании, на расстояниях, превышающих размеры частиц, могут проявляться электростатические силы межмолекулярного притяжения, или так называемые силы Ван-дер-Ваальса. Как показывают квантово-механические расчеты, Епр. определяется суммой ориентационного, индукционного и дисперсионного взаимодействий: Епр=Еор+Еинд+Едисп. Ориентационное вз. проявляется между полярными молекулами, которые при приближении поворачиваются (ориентируются) друг к другу разноименными полюсами так, стобы пот Е сист. стала мин. Индукционное взаимодействие связано с процессами поляризации молекул окружающими диполями.

Дисперсионное взаимодействие возникает у любых молекул, независимо от их строения и полярности. Вследствие мгновенного несовпадения центров тяжести зарядов е облака и ядер образуется мгновенный диполь, который индуцирует мгновенные диполи в др.частицах.

Силы притяжения Ван-дер-Ваальса – дальнодействующие. На небольших расстояниях между молекулами заметными становятся близкодействующие силы отталкивания (силы Паули), которые возрастают при сближении частиц. Для неполярных молекул Е межмол. взаим опис.: , где l-расст-е между мол., а и b – пост., завис от прир вещ-в. U0 – Е взаим. молек. на равновесном расстоянии… <=1…5кДж/моль, т.е. по сравнению с ковалентной связью межмолек. взаим. оч слабое.

Промежуточный характер между валентным и межмолекулярным взаимодействием имеет водородная связь. Она хар-на для жидкостей, в состав молекул которых (вода, спирты, кислоты) входит положительно поляризованный атом водорода. Малые размеры и отсутствие внутренних е позволяют атому Н вступать в доп. взаим. с ков-но с ним не связ. отриц-но поляризованным атомом др. молекулы. Такая специф. связь имеет черты электростатич. и дон-акц. взаим. и прив. к обр. ассоциатов молекул.

Е водородных связей невелика (8…80 кДж/моль), и в области выс. т-р эти связи практически не существуют.


Периодический закон Д. И. Менделеева. Периодическое изменение физических и химических свойств элементов. Основные энергетические характеристики атома: энергия ионизации, сродство к электрону. Электроотрицательность. Закономерности их изменения в периодической системе элементов.


В настоящее время ПЗ формулируется: свойства хим. элементов, а также форма и свойства образуемых ими соединений находятся в периодической зависимости от величины заряда ядер их атомов. Каждый из периодов (исключая первый) начинается типичным металлом (щелочной группы) и заканчивается инертным газом.

В периоде, с увеличением заряда ядра наблюдается изменение св-в от металлических к типично неметаллическим, что связано с увеличением числа е на внешнем энергетическом уровне.

В Группах объединены элементы, имеющие сходное е строение внешнего эн. уровня. Эл-ты аналоги (в 1 группе) проявляют схожие хим. св-ва. Т.о., при послед. увеличении зарядов атомных ядер периодически повторяется конфигурация ЭО и, как следствие, периодически повторяются хим. св-ва элементов. В этом заключается физ. смысл периодического закона.

Номер группы, как правило, указывает на число е, способных участвовать в образовании хим. связей (валентные электроны). – физический смысл номера группы.

Важнейшие характеристики атомов: размеры, энергия ионизации, сродство к электрону, электроотрицательность.

Атомные радиусы - Орбитальные радиусы атомов изменяются периодически. В периодах, по мере роста заряда ядер ОР уменьшаются (при одинаковом числе эн. уров. в периоде возрастает заряд ядра, а след., и притяжение е к ядру.). В группах с ростом заряда ядер ОР атомов увеличиваются. В главных подгруппах такое увел. происх. в большей степени.

Энергия ионизации – минимальная Е, которую требуется затратить на то, чтобы удалить данный е с АО невозбужденного атома на б.б. расстояние от ядра без сообщения ему кин. Е. (Э+Е->Э*+ + е), Е – в кДж/моль. Е хар-ет спос. ат. удерж. е – важная хар-ка его хим. акт-ти. Для много-е атомов можно рассматривать несколько Е, соотв-х Е отрыва 1,2, 3… е. (в периодах Е увел, в группах уменьшается). Потенциал ионизации –разность потенциалов, под воздействием которой е обретает Е, соотв. Е ионизации, измеряют в вольтах.

Сродство к е атома – энергия, которая выделяется (или затрачивается) при присоединении в нейтральному атому е с образованием отрицательного иона: Э+е->Э*- + Е, в кДж/моль. Сродство к е считают положительным, если присоед. сопр. выделением Е и наоборот. Зависит от е стр-ры атома. Наибольшим сродством обладают Эл. гр. VIIA (галогены). В подгруппах сверху вниз уменьшается, но не всегда монотонно.

Электроотрицательность. Это способность атома в молекуле или сложном ионе притягивать к себе е, учавствующие в образовании хим. связи.

В периоде эо аозрастает с увеличением порядкового номера, а в группе, как правило, убывает по мере увеличения ядра. Т.о. наим эо – s-эл. 1-ой группы, наиб. – p-эл-ты 6, 7 групп.









Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.