Содержится доступная инфа,для быстрой ботвы+шпоры=) (шпоры_в_более_удобной_для_заучивания_форме.)

Посмотреть архив целиком

Билет №1.

  1. Векторный способ задания движения точки. Траектория, скорость, ускорение точки.

  2. Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.


1. Векторная система координат.

Положение точки М определено, если радиус-вектор r из центра О выражен функцией времени t r= r(t) задан способ определения модуля вектора и его направления, если имеется система координат. Скорость и ускорение:

tr(t), тогда

(t+Δt)r(t+Δt), получаем

Δr= r(t+Δt)-r(t)

Vср=Δr/Δt. V=lim(Δr/Δt)=dr/dt.

aсрV/Δt. a=lim(Δv/Δt)=dV/dt= d²r(t)/dt².

Переход от векторной формы к координатной:

r(t)=x(t)i+y(t)j+z(t)k.

Обратно:

x=r(t)×i, y=r(t)×j, z=r(t)×k.

2. Эквивалентность пар. Сложение пар. Условия равновесия пар сил.

Эквивалентность: А) 2 пары, имеющие равные моменты, эквивалентны. Пару сил можно перемещать, поворачивать в плоскости действия, перемещать в параллельную плоскость, менять одновременно силу и плечо.

Б) 2 пары, лежащие в одной плоскости, можно заменить на одну пару, лежащую в той же плоскости с моментом, равным сумме моментов этих пар.

M=M(R,R’)=BA×R=BA×(F1+F2)=BA×F1+BA×F2. При переносе сил вдоль линии действия момент пары не меняется BA×F1=M1, BA×F2=M2, M=M1+M2.

СЛОЖЕНИЕ. 2 пары, лежащие в пересекающихся плоскостях, эквивалентны 1 паре, момент которой равен сумме моментов двух данных пар.

Дано: (F1, F1’), (F2, F2’)

Доказательство:

Приведем данные силы к плечу АВ – оси пересечения плоскостей. Получим пары:

(Q1,Q1’) и (Q2,Q2’). При этом M1=M(Q1,Q1’)=M(F1, F1’),

M2=M(Q2,Q2’)=M(F2, F2’).

Сложим силы R=Q1+Q2, R=Q1’+Q2’. Т. к. Q1’= - Q1, Q2’= - Q2 R= -R’. Доказано, что система двух пар эквивалентна системе (R,R’). M(R,R’)=BA×R=BA×(Q1+Q2)= BA×Q1+BA×Q2=M(Q1,Q1’)+ M(Q2,Q2’)=M(F1,F1’)+ M(F2,F2’) M=M1+M2.

УСЛОВИЯ РАВНОВЕСИЯ:

Система находится в равновесии, если суммарный момент всех пар сил, действующих на тело, равен нулю.

M1+ M2+…+ Mn=0.


Билет №2.

  1. Координатный способ задания движения точки (прямоугольная декартова система координат). Траектория, скорость, ускорение точки.

  2. Аксиомы статики.


1. Декартова система координат.

Вектор r можно разложить по базису I, j, k: r=xi+yj+zk.

Движение материальной точки полностью определено, если заданы три непрерывные и однозначные функции от времени t: x=x(t), y=y(t), z=z(t), описывающие изменение координат точки со временем. Эти уравнение называются кинематическими уравнениями движения точки. Радиус-вектор r является функцией переменных x, y, z, которые, в свою очередь, являются функциями времени t. Поэтому производная r׳(t) может быть вычислена по правилу

dr/dt=∂r/∂xdx/dt+∂r/∂ydy/dt+∂r/∂zdz/dt.

Отсюда вытекает, что v=vxi+vyj+vzk.

V=√(vx²+vy²+vz²)

Ускорением точки в данный момент времени назовем вектор а, равный производной от вектора скорости v по времени. А=x׳׳(t)I+y׳׳(t)j+z׳׳(t)k.

А=√((x׳׳(t))²+(y׳׳(t))²+(z׳׳(t))²)

2. Аксиомы статики.

  1. 2 силы, приложенные к абс. твердому телу будут эквивалентны 0 тогда и только тогда, когда они равны по модулю, действуют на одной прямой и направлены в противоположные стороны.

  2. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней добавить или отнять систему сил, эквивалентную 0 => точку приложения силы можно переносить вдоль линии её действия.

  3. Если к телу приложены 2 силы, исходящие из одной точки, то их можно заменить равнодействующей (любую силу можно разложить на составляющие бесконечное число раз).

  4. Силы взаимодействия двух тел равны по модулю и противоположны по направлению.

Действие связей можно заменить действием сил – реакций связи.


Билет №3.

  1. Естественный способ задания движения точки. Траектория, скорость, ускорение точки.

  2. Алгебраический и векторный момент силы относительно точки.


1. Естественный способ.

Если задана траектория движения точки, выбрано начало и положительное направление отсчета и известна S=S(t) зависимость пути от времени, то такой способ задания движения точки называется естественным. V=dr/dtdS/dS=S׳(t)∙dr/dS=S׳(t)∙τ= =vττ. Dr/dS=τ. Τ направлена всегда в «+» направлении отсчета S.

A=dv/dt=S׳׳(t)∙τ+S׳(t)∙dτ/dt=S׳׳∙τ+ (S׳n/ρ. Aτ=S׳׳-тангенциальное ускорение, an=(S׳)²/ρ-нормальное (центростремительное) ускорение, ρ-радиус кривизны.

A=√((aτ)²+(an)²).

2. Векторный и алгебраический момент пары сил.

Алгебраический момент M=Fd (пара). M=dF1=dF2=2SΔABC= Sٱ. Он не меняется при перемещении сил вдоль линии их действия (ни плечо, ни направление вращения не меняются).

Векторный момент – вектор M=M(F,F), направлен перпендикулярно плоскости пары в ту сторону, откуда видно стремление пары повернуть тело против часовой хода стрелки, его модуль равен алгебраическому моменту пары.

M(F1,F2)=BAxF1=ABxF2.

Моменты относительно точки.

Алгебраическим моментом силы F относительно точки О называется взятое со знаком «+» или «-» произведение |F| на её плечо: MO(F)=Fh=2SΔOAB MO(F). «+» - против часовой стрелки. Характеризует вращательный эффект F.

Свойства:

А) Не меняется при переносе точки приложения вдоль линии действия силы. (т.к. |F|sinα= const).

Б) Ь=0 если т. О лежит на линии действия силы.

Плоскость действия M – через F и O.

Векторный момент силы F относительно точки О – вектор MO(F)=rxF (r – радиус- вектор из А в О). |MO(F)|=|F|∙|r|∙sinα=Fh.

i j k

MO(F)= xA yA zA =>

Fx Fy Fz


  • MOx(F)=yFz-zFy

  • MOy(F)=zFx-xFz

MOz(F)=xFy-yFx


Билет №4.

  1. Координатный способ задания движения точки (полярная система координат). Траектория, скорость, ускорение точки.

  2. Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.


1. Полярные координаты

Ox – полярная ось, φ – полярный угол, r – полярный радиус. Если задан закон r=r(t), φ=φ(t), то задано движение в полярной системе координат. Пусть r=rºr, rº - единичный вектор, pº┴rº - единичный вектор. Тогда v=dr/dt=r׳rº+

rd/dt=r׳+rφ׳=vr+vppº. vp и vrтрансверсальная и радиальная составляющая скорости. A=dv/dt=d(r׳+rφ׳)/ dt=r׳׳+r׳d/dt+r׳φ׳+rφ׳׳+rφ׳∙

d/dt=(r׳׳-(rφ׳)²)+(rφ׳׳+2r׳φ׳)= ar+ap.

r²=x²+y², φ=arctg(y/x).

vr=r׳=(xvx+yvy)/r,

vp=rφ׳=(xvy-yvx)/r

2. Т. о приведении произвольной системы сил к силе и паре сил.

Теорема Пуассо: Произвольная система сил, действующих на твердое тело, можно привести к какому-либо центру О, заменив все действующие силы главным вектором системы сил R, приложенным к точке О, и главным моментом MO системы сил относительно точки О.

Доказательство:

Пусть О – центр приведения. Переносим силы F1, F2,…,Fn в точку О: FO= F1 +F2+…+Fn= ∑Fk. При этом получаем каждый раз соответствующую пару сил (F1,F1”)…(Fn,Fn”), Моменты этих пар равны моментам этих сил относительно точки О. M1=M(F1,F1”)=r1xF1=MO(F1). На основании правила приведения систем пар к простейшему виду MO=M1+…+M2=∑MO(Fk)= ∑rkxFk => (F1, F2,…,Fn) ~ (R,MO) (не зависит от выбора точки О).



Билет №5.

  1. Определение скорости точки при задании ее движения в криволинейных координатах.

  2. Момент силы относительно оси.


1. Скорость точки в криволинейных координатах.

V=dr/dt=(∂r/∂q1)∙dq1/dt+(∂r/∂q2)∙dq2/dt+(∂r/∂q3)∙dq3/dt.

v=(dq1/dt)H1e1+(dq2/dt)H2e2+(dq3/dt)H3e3.

v=√(dq1/dtH1²+(dq2/dtH2²+(dq3/dtH3². vq1=(dq1/dt)H1, vq2=(dq2/dt)H2, vq3=(dq3/dt)H3.

Пример: 1) скорость в цилиндрической системе.

Т.к. x=ρcosφ, y=ρsinφ, z=z, то

H1=1, H2=ρ, H3=1.

vρ=dρ/dt, vφ=ρdφ/dt, vz=dz/dt.

2) Движение по винтовой.

ρ=R=const, φ=kt, z=ut.

vρ=0, vφ=kR, vz=u.

2. Момент силы относительно оси.

Момент силы относительно оси – алгебраический момент проекции этой силы на ось, перпендикулярную оси z, взятого относительно точки A пересечения оси с этой плоскостью. Характеризует вращательный эффект относительно оси.

Mz(F)=2SΔABC=Fh.

Если Mz(F)=0, то сила F либо параллельна оси z, либо линия её действия пересекает ось z.


Билет №6.

  1. Понятие о криволинейных координатах. Координатные линии и координатные оси.

  2. Основные виды связей и их реакции.


1. Криволинейные координаты.

Устанавливают закон выбора 3 чисел q1, q2, q3. q1, q2, q3 – криволинейные координаты. Функция координат: r=r(q1,q2,q3) (из точки О).

Возьмем точку М0 с координатами q1,q10,q20.

X=X(q1,q20,q30);

Y=Y(q1,q20,q30);

Z=Z(q1,q20,q30);

Определяют кривую (переменная только q1). Кривая – координатная линия, соответствующая изменению q1 (аналогично q2 и q3). Касательные к координатным линиям, проведенные в точке M0 в сторону возрастания соответствующих координат – координатные оси: [q1], [q2], [q3].






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.