Условия лаб (до 7_2) (Студентам задани4_3 на Программы циклической структуры Табули)

Посмотреть архив целиком

9


Студентам задания 4_3 на Программы циклической структуры

Построение таблиц функций. Во всех заданиях использовать только простые циклы.

  1. Вычислить для первых 20 значений и вывести в виде таблицы с заголовками:

  • значения функции ln(1+x),

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор for downto. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при X=(-0,5; -0,25; 0; 0,25; 0,5; 0,75; 1) и вывести в виде таблицы с заголовками:

  • значения функции ,

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор while. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при X, изменяющемся от 0,1 до /3 с шагом 0,05, и вывести в виде таблицы с заголовками:

  • значения функции sin(x),

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор for to. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить в цикле repeat until при X, изменяющемся от 0 до /4 с шагом 0,1, и вывести в виде таблицы с заголовками:

  • значения функции cos(x),

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при X, изменяющемся от A до B с шагом H, и вывести в виде таблицы с заголовками:

  • значения функции tg(x),

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор for downto. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при M, изменяющемся от 0 до 6 с шагом 0,5, и вывести в виде таблицы с заголовками:

  • значения функции ,

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор while. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при X=(1; 0,5; 0,25; 0,125; 0,0625; 0,03125; 0,015625) и вывести в виде таблицы с заголовками:

  • значения функции ,

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор for to. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при X=sin(5o), sin(10o),…, sin(60o) и вывести в виде таблицы с заголовками:

  • значения функции arcsin(x)

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор for to. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить в цикле repeat until при первых 15 значениях и вывести в виде таблицы с заголовками:

  • значения функции arctg(x)

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Вычислить при X, изменяющемся от X0 до X1 с шагом H, и вывести в виде таблицы с заголовками:

  • значения функции

  • приближенные значения функции по формуле
    ,
    используя скобочные формы и/или дополнительные переменные,

  • приближенные значения функции по этой же формуле, не используя скобочные формы и дополнительные переменные,

  • абсолютную и относительную ошибки приближенных значений.

Для организации цикла использовать оператор for downto. При вычислениях приближенных значений использовать только операции сложения, вычитания, умножения, деления и стандартную функцию Sqr(X).

  1. Для функции и вводимого значения X вычислить:

  • точное значение производной
    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

а также вычислить для 8-ми значений DX=(0,2; 0,04; 0,008;…):

  • приближенные значения приращений функции DY=Y(X+DX)-Y(X),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

Для организации цикла использовать оператор while. Результаты вычислений и соответствующие значения DX вывести в виде таблицы с заголовками столбцов.

  1. Для функции и вводимого значения X вычислить:

  • точное значение производной
    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

а также вычислить для значений DX=(0,0001; 0,001; 0,01; 0,1):

  • приближенные значения приращений функции DY=Y(X+DX/2)-Y(X-DX/2),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

Для организации цикла использовать оператор for to. Результаты вычислений и соответствующие значения DX вывести в виде таблицы с заголовками столбцов.

  1. Для функции и вводимого значения X вычислить:

  • точное значение производной
    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

а также вычислить для значений DX=(10-2, 10-3, 10-4, 10-5, 10-6):

  • приближенные значения приращений функции DY=Y(X+DX)-Y(X),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

Для организации цикла использовать оператор for to. Результаты вычислений и соответствующие значения DX вывести в виде таблицы с заголовками столбцов.

  1. Для функции и вводимого значения X вычислить

  • точное значение производной

а) упростив вычисления за счет дополнительных переменных,
б) не используя дополнительных переменных,

а также вычислить в цикле repeat until для значений DX=(0,00001; 0,0001; 0,001; 0,01; 0,1):

  • приближенные значения приращений функции DY=Y(X+DX/2)-Y(X- DX/2),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной

и вывести полученные значения и соответствующие значения DX в виде таблицы с заголовками столбцов.

  1. Для функции в точке X=0,3 вычислить:

  • точное значение производной

    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

а также вычислить в цикле for downto для значений DX=(0,00000025; 0,000005; 0,0001; 0,002; 0,04; 0,8):

  • приближенные значения приращений функции DY=Y(X+DX)-Y(X),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

и вывести полученные значения и соответствующие значения DX в виде таблицы с заголовками столбцов.

  1. Для функции и вводимого значения X вычислить:

  • точное значение производной

    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

а также вычислить в цикле while для значений DX=(0,0005; 0,001; 0,002; 0,004; 0,008; 0,016):

  • приближенные значения приращений функции DY=Y(X+DX/2)-Y(X- DX/2),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

и вывести полученные значения и соответствующие значения DX в виде таблицы с заголовками столбцов.

  1. Для функции и вводимого значения X вычислить:

  • точное значение производной
    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

а также вычислить в цикле for to для семи значений DX=(0,000001; 0,000004; 0,000016; 0,000064;…):

  • приближенные значения приращений функции DY=Y(X+DX)-Y(X),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

и вывести полученные значения и соответствующие значения DX в виде таблицы с заголовками столбцов.

  1. Для функции и вводимого значения X вычислить:

  • точное значение производной
    а) упростив вычисления за счет дополнительных переменных, и
    б) не используя дополнительных переменных,

а также вычислить в цикле for to для 12-ти значений DX=(1/3, 1/9, 1/27, 1/81,…):

  • приближенные значения приращений функции DY=Y(X+DX)-Y(X),

  • приближенные значения производной по отношению DY/DX,

  • абсолютные ошибки приближенных значений производной.

и вывести полученные значения и соответствующие значения DX в виде таблицы с заголовками столбцов.

  1. Упростив вычисления за счет использования дополнительных переменных и/или скобочных форм, вычислить в цикле repeat until значения функции

и ее производной

на интервале от -7,5o до 7,5o с шагом 0,75o.

Для проверки правильности результата вычислить также значение производной по заданной формуле без преобразований.

Вычисленные значения вывести в виде таблицы с предшествующими порядковым номером и соответствующим значением аргумента Х.

  1. Упростив вычисления за счет использования дополнительных переменных и/или скобочных форм, вычислить значения функции

и ее производной

на интервале от -1,1 до 1,0 с шагом 0,1.

Для проверки правильности результата вычислить также значение производной по заданной формуле без преобразований.

Вычисленные значения вывести в виде таблицы с предшествующими порядковым номером и соответствующим значением аргумента Х. Для организации цикла использовать оператор for downto.

  1. Для функции при X= 0,5 и K приращениях аргумента DX=(0,0005; 0,001; 0,002; 0,004; 0,008;...) вычислить:

  • точное значение приращения первообразной ,

а также вычислить

  • по формуле (F(X+DX/2)·DX - приближенные значения приращения первообразной
    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

  • абсолютные ошибки и относительные ошибки в процентах для вычисленных приближенных значений.

Результаты вычислений и соответствующие значения DX вывести в виде таблицы с заголовками столбцов. Для организации цикла использовать оператор while.

  1. Для функции и вводимого значения X при N приращениях аргумента

DX=(-0,1; -0,1/4; -0,1/16;…) вычислить:

  • точное значение приращения первообразной
    ,

а также вычислить

  • по формуле F(XDX - приближенные значения приращения первообразной
    а) упростив вычисления за счет дополнительных переменных,
    б) не используя дополнительных переменных,

  • абсолютные ошибки и относительные ошибки в процентах для вычисленных приближенных значений.

Результаты вычислений и соответствующие значения DX вывести в виде таблицы с заголовками столбцов. Для организации цикла использовать оператор for to.

  1. Для функции