Определение законов распределения случайных величин и их числовых характеристик на основе опытных данных. Проверка статистических гипотез (Mine version)

Посмотреть архив целиком

Самарский государственный аэрокосмический университет
им. академика С.П. Королева

Кафедра прикладной математики


Расчетно-графическая работ по курсу «Теория вероятностей и математическая статистика»

Тема работы: «Определение законов распределения случайных величин и их числовых характеристик на основе опытных данных. Проверка статистических гипотез»

Вариант № 15





Выполнил студент группы № 625
Евгений В. Репекто





Самара - 2002

Задание на расчетно-графическую работу

Дан протокол содержащий 120 пронумерованных значений:





1

4

31

10

61

20

91

44

2

19

32

25

62

16

92

12

3

25

33

38

63

15

93

16

4

-4

34

1

64

32

94

9

5

58

35

19

65

52

95

12

6

34

36

55

66

-5

96

40

7

32

37

9

67

21

97

17

8

36

38

11

68

30

98

10

9

37

39

6

69

27

99

31

10

4

40

31

70

12

100

49

11

24

41

17

71

19

101

25

12

3

42

-6

72

1

102

33

13

48

43

14

73

23

103

26

14

36

44

9

74

7

104

19

15

27

45

13

75

4

105

25

16

20

46

25

76

16

106

34

17

1

47

11

77

38

107

10

18

39

48

18

78

40

108

24

19

11

49

2

79

30

109

2

20

16

50

29

80

14

110

38

21

49

51

20

81

51

111

30

22

25

52

48

82

17

112

10

23

26

53

16

83

25

113

39

24

30

54

29

84

34

114

1

25

19

55

12

85

23

115

40

26

32

56

-3

86

20

116

7

27

3

57

16

87

9

117

26

28

40

58

41

88

29

118

36

29

45

59

19

89

18

119

22

30

35

60

0

90

46

120

28


Все эти протокольные значения считаются значениями выборки

некоторой случайной величины , а 60 из них, имеющие нечетные номера – значениями выборки

другой случайной величины

Требуется:

  1. Построить вариационные ряды для случайных величин и .

  2. Произведя группировку элементов каждой выборки (используя формулу Стерджеса) построить статистические ряды распределения случайных величин и .

Образец заполнения таблицы для статистического ряда.

пр-ка

Границы промежутка

Середина промежутка

Количество элементов выборки в промежутке

Частота для промежутка

1

2






  1. Построить гистограммы распределения случайных величин и .

  2. Найти выборочное среднее , и исправленные выборочные дисперсии: , случайных величин и .

  3. Проверить, используя метод гипотезу о нормальном распределении, каждой из случайных величин и при уровне значимости .

  4. Построить график функции плотности распределения случайной величины в одной системе координат с гистограммой.( взяв в качестве математического ожидания их статистические оценки и ) и вычислив значение функции в точках: , , а также в точке левее первого и правее правого промежутка группировки.

  5. Выполнить задание 6 для случайной величины .

  6. Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин и , соответствующие доверительной вероятности .

  7. Проверить статистическую гипотезу при альтернативной гипотезе на уровне значимости .

  8. Проверить статистическую гипотезу при альтернативной гипотезе