Математическое моделирование электропривода (privod14)

Посмотреть архив целиком

20



Введение 2

1.Физическое описание объекта исследования 4

2.Математическое моделирование 7

2.1.Построение уравнения 7

2.2.Определение свойств системы 12

3.построение Имитационной Модели 14

3.1.Построение имитационной модели в Simulink 14

3.2.Эксперименты с варьированием параметров модели 16

заключение 19

Список используемой литературы 20

Введение

В данной курсовой работе описано применение развитой теории конструирования алгоритмов управления движением систем с одной степенью свободы. Рассмотрение происходит на примере моделирования электропривода. Здесь взяты методики синтеза алгоритмов по линейным и нелинейным математическим моделям управляемых процессов. Процедура построения алгоритмов предусматривает последовательный синтез контуров управления ускорением, угловой скоростью вращательного движения и положением. Такой подход позволяет выполнить декомпозицию задачи, упростить её решение и наиболее полно учесть требования к синтезируемой системе. В ходе работы будут представлены результаты математического моделирования процессов управления приводом и даны рекомендации по практической реализации алгоритмов.

Математическое моделирование представляет собой формальное описание систем (статических и динамических) на математическом языке. Динамическая система является способом формализованного описания процессов, развивающихся во времени. Под динамической системой понимают объекты материального мира, которые характеризуются следующими свойствами:

1) Наличием входных и выходных переменных, отражающих причинно следственную связь процессов, происходящих в системе.

2) Динамическая система характеризуется наличием памяти (наличием инерционных свойств). Это означает, что в любой момент времени t значение выходной переменной не может быть однозначно определено соответствующим значением входной переменной и зависит от предыстории системы. Таким образом, для полного описания динамической системы недостаточно задания только входных и выходных переменных.

В курсовой работе ставятся следующие задачи:

  • Рассмотреть задачу математического моделирования электропривода;

  • Установить свойства динамических процессов в заданном электроприводе;

  • Построить имитационную модель с помощью средств программы Simulink пакета Matlab;

  • С помощью полученной модели провести ряд экспериментов, варьируя параметры модели.

  • Проанализировав результаты экспериментов, подтвердить правильность сделанных выводов, полученных при математическом исследовании представленных процессов.

  1. Физическое описание объекта исследования

Рассмотрим управляемую систему, движение которой подчиняется уравнению

(1)

Отметим особенности рассматриваемой системы.

При уравнение (1) описывает колебательную систему с переменным демпфированием. Качественный характер свободного движения такой системы определяется величиной . При малых (сравнительно с единицей) значениях в системе устанавливаются почти синусоидальные колебания, период которых незначительно отличается от . А при колебания имеют релаксационный характер с периодом намного большим .

Синтезируем для системы (1) такой алгоритм управления, при котором ее движение в точку проходит в окрестности решения дифференциального уравнения

, (2)

где - постоянная времени, - декремент затухания колебаний. В случае же длительность процесса в системе (2) равна .

Запишем уравнение (1) в следующем виде

. (3)

Тогда уравнения замкнутой системы будут иметь вид

(4)

Параметры эталонной системы известны. Коэффициент ускорения контура ускорения подлежит определению из условия, чтобы процесс в синтезируемой системе (4) проходил в окрестности решения уравнения (2). Искомое значение можно найти по формуле

,

где находят из (3)

, , .

Отсюда, подставляя значение производных в точке , имеем

(5)

По этому соотношению можно вычислить требуемый коэффициент усиления для заданных значений , если назначена величина .

В Таблица 1 представлены соотношения , соответствующие различным значениям параметра для случая, когда усиление в контуре ускорения принято равным и . В соответствии с (5) величина , при расчетах принималось .

Таблица 1

0,2

0,4

0,6

0,8

1,0

3,0

4,4

4,3

4,2

4,1

4,0

3,0

9

3,0

2,9

2,8

2,7

2,6

1,6

6,2


Видно что в алгоритме управления с усилением отношение постоянных времени при изменении параметра в пределах . Это свидетельствует о слабой параметрической чувствительности системы (4). Напротив, если принять , то при изменении в указанном диапазоне соотношение между постоянными времени (по управляемой переменной) и (контура ускорения) будет меньше трех. В данном случае процесс будет заметно отличаться от эталонного при