Математический анализ (тан7)

Посмотреть архив целиком

§ 7. Обыкновенные дифференциальные уравнения


Математическое исследование многих реальных процессов основано на применении дифференциальных уравнений, содержащих производные искомых функций. Аппарат дифференциальных уравнений универсален: разнообразные процессы могут описываться одинаковыми уравнениями. Практика показывает, что даже простые математические модели, использующие дифференциальные уравнения, позволяют качественно изучить основные черты сложных явлений и оценить их количественные характеристики.


1. Определения


Порядком дифференциального уравнения называется наибольший порядок входящих в него производных. Этот параграф посвящен обыкновенным дифференциальным уравнениям первого порядка, то есть уравнениям вида

,

где - заданная функция, - независимая переменная, - искомая функция, - ее производная. Уравнения вида

называются разрешенными относительно производной.

Функция называется решением дифференциального уравнения, если после ее подстановки уравнение обращается в тождество. Процесс нахождения решений называется интегрированием уравнения. Решить уравнение значит найти все его решения.

Ниже рассматриваются только уравнения, разрешенные относительно производной. В простейшем случае, когда правая часть уравнения не зависит от , то есть уравнение имеет вид

,

любое его решение является первообразной функции , а интегрирование уравнения сводится к отысканию неопределенного интеграла от (см. § 4). Совокупность всех решений, то есть общее решение уравнения, можно представить формулой

,

где - произвольная постоянная. При этом в данном параграфе под неопределенным интегралом функции условимся понимать не все множество ее первообразных, а любую фиксированную первообразную.


Пример. Для уравнения

,

интегрируя, получим общее решение

.


В следующем пункте рассматривается один класс уравнений, общее решение которых представляется в квадратурах, то есть с использованием интегралов от известных функций.


2. Уравнения с разделяющимися переменными


Дифференциальным уравнением с разделяющимися переменными называется уравнение вида

, (1)

где и - заданные функции.

Заметим, что если для некоторого значения выполнено , то функция является решением уравнения (1).

Рассмотрим случай . Разделив левую и правую части уравнения на , получим , откуда следует соотношение между первообразными , где - произвольная постоянная. Используя формулу замены переменной в неопределенном интеграле (см. § 4), получаем равенство

, (2)

определяющее в неявном виде семейство решений уравнения (1), зависящее от произвольной постоянной.


Замечание. Чтобы из бесконечного множества решений дифференциального уравнения выделить частное решение нужно задать какое-либо дополнительное условие, например,

, (3)

где , - некоторые постоянные. Условие (2) называется начальным, а задача отыскания решения, удовлетворяющего такому условию, называется задачей Коши.


Пример. Найдем общее решение уравнения

.

Используя (2), получаем , то есть , где - произвольная постоянная. Отсюда находим семейство решений . Кроме того, имеется решение , при котором правая часть уравнения обращается в ноль. Все найденные решения можно представить одной формулой

,

где - произвольная постоянная.


Пример. Рассмотрим уравнение

. (4)

Как и в предыдущем примере,