Математические модели естествознания (LEKCY9)

Посмотреть архив целиком

- 66 -



Дрейф генов

Дрейф генов -это случайные отклонения частот аллелей от теоретически ожидаемых, возникающие в результате недостаточного объема выборки. Такие явления часто называют ошибками выборки. Дрейф генов постоянно происходит в популяциях, поскольку их численность всегда конечна. Дополнительно заметим, что правильное представление о численности популяции дает не общее число особей, а число особей дающих начало следующему поколению. Действительно, только они дают вклад в генофонд следующего поколения.

Будем рассуждать в терминах аллелей, не переходя к генотипам. Рассмотрим популяцию аллелей и . Пусть априорно их частоты суть и . Случайным образом сформируем выборку из аллелей, которые оставят потомство. Пусть -число аллелей в выборке. Согласно теореме Муавра -Лапласа вероятность события , где , стремится при к числу . Здесь -нормальное распределение. В частности, если , то . Для эмпирической частоты аллеля в выборке получаем оценку: , которая выполнена с вероятностью . Поскольку , то . Чем длиннее выборка, тем эмпирическая частота ближе к априорной. Например, при получаем . Наоборот, при эмпирическая частота аллеля может принимать лишь одно из трех значений , т.е. эмпирическая частота в общем случае далека от априорной.

Рассмотрим следующую модельную ситуацию. Пусть для родителей, давших жизнь первому поколению, аллели и наблюдались с априорными частотами и . Начиная с нулевого поколения случайным образом формируется выборка из аллелей, которые дают начало следующему поколению. Выборку назовем эффективной популяцией, а ее длину - эффективной численностью. Будем считать, что из поколения в поколение эффективная численность неизменна. Допустим еще, в момент появления на свет нового поколения общая численность популяции становится значительно больше . При этом частоты аллелей в новом поколении (до формирования эффективной популяции) совпадают с частотами эффективной популяции предыдущего поколения.

Будем говорить, что эффективная популяция находится в состоянии , если она содержит ровно аллелей . Для состояния частота аллелей а эффективной популяции суть . В любом поколении эффективная популяция находится в одном из -ом состояний . Рассмотрим эффективную популяцию -ого поколения. Пусть она находится в -ом состоянии. Вероятность того, что в следующем -ом поколении эффективная популяция будет находиться в состоянии суть

. (34)

Обратим внимание, что и для всех , а также и для всех . Таким образом, если в -ом поколении популяция оказывается в состояниях или , то в дальнейшем она остается в эти состояниях. Пусть эффективная популяция -ого поколения находится в состояниях с вероятностями . Используя формулу полной вероятности, получаем вероятности

(35)

того, что эффективная популяция -ого поколения окажется в состоянии . Введем последовательность векторов вероятностей состояний эффективных популяций последовательных поколений и матрицу . Тогда сотношения (35) перепишутся в виде:

. (36)

Оказалось, что рассматриваемая система обладает следующим свойством. В любой дискретный момент времени она может находиться в одном из -ом состояний. Если в -ый дискретный момент времени для нее известны вероятности нахождения в состояниях , то однозначно вычисляются вероятности обнаружить систему в этих состояниях в следующий момент времени. Такие системы называются цепями Маркова. Матрица называется матрицей переходных вероятностей.

Как уже отмечалось, из формул (34) для элементов матрицы следует, что и . Рассматривая первую и последнюю строки уравнений (36) получаем:

,

.

Эти неравенства строгие, пока по крайней мере одно из чисел для . Тем самым, последовательности и монотонно растут. Поскольку они ограничены, то имеют пределы: и при . В предельной точке приращения нет, поэтому для . Полученные результаты означают, что в пределе в популяции остается либо аллель , либо аллель . Действительно, вероятность события, что в популяции присутствуют оба аллеля равна нулю.

Вычислим значения и . Рассмотрим математическое ожидание числа аллелей в -ом эффективном поколении:

Таким образом, имеет место важнейшее соотношение для математического ожидания:

, (37)

Отметим, что цепи Маркова, для которых выполнено данное соотношение , называются мартингалами. (Совершенно наивно интерпретировать (37), как то, что в среднем число аллелей сохраняется, т.к. один из аллелей вытесняется из популяции.)

Напомним, что для родителей, давших начало нулевому поколению, аллели наблюдались с априорной частотой . Следовательно, математическое ожидание числа аллелей в нулевом поколении суть . В предельном состоянии математическое ожидание равно . В результате получает вероятность события, что из популяции будет вытеснен аллель и, соответственно, будет фиксирован аллель .

Сделаем следующее замечание. Пусть эффективная популяция нулевого поколения оказалась в состоянии , т.е. число аллелей равно . Тогда вероятность фиксации аллеля будет равна . Таким образом, результаты опыта позволяют уточнить априорную вероятность.

Можно вычислить математическое ожидание числа поколений, по прошествии которого один из аллелей будет вытеснен из популяции. Оказывается, что это число задается формулой:

,

где -априорная частота аллеля у родителей, давших начало нулевому поколению.

Кумулятивные эффекты, или эффекты накопления изменений в процессе дрейфа генов изучались экспериментально. Питер Ф. Бьюри работал со 107 изолированными популяциями мух -дрозофил. В каждой из них случайным образом отбиралось 8 самцов и 8 самок, которые давали начало следующему поколению. Тем самым, эффективная численность популяции составляла 16 особей, или же 32 аллеля. В начале эксперимента все особи были гетерозиготны, т.е. априорные частоты аллелей были равны 0.5. Фиксация аллеля в одной из популяций впервые произошла в четвертом поколении. Число популяций с фиксированными аллелями постепенно расло на протяжении 19 поколений. Затем эксперимент был прекращен. В 19 -ом поколении в 30 популяциях был фиксирован один аллель, а 28 популяциях -другой. Если бы эксперимент продолжался дальше, то в конце концов аллели были бы фиксированы во всех популяциях. Для обоих аллелей число популяций, в которых они фиксированы, было бы одинаковым. Отметим, что математическое ожидание числа поколений, по прошествии которого один из аллелей фиксируется, для данного случая суть .

Если популяция многочисленна, то фактор дрейфа генов оказывает весьма незначительное влияние на частоты аллелей по сравнению с процессами отбора, мутации и миграции. Для маллых популяций, наоборот, дрейф генов существенен.

Предельный случай дрейфа генов возникновение новой популяции, первоначально состоявшей лишь из нескольких особей. Такой процесс Эрнст Майр назвал эффектом основателя. Популяции многих видов, обитающих на океанических островах, в настоящее насчитывают миллионы особей. Однако они происходят от нескольких, случайно попавших туда особей. В результате ошибок выборки частоты аллелей у основателей новой популяции могут существенно отличаться от частот аллелей в популяции, из которой произошли основатели. Это может наложить отпечаток на дальнейшую эволюцию.

Случайные изменения частот аллелей возникают также в случае, если популяция в своем развитии проходит бутылочное горлышко. Когда природные условия существования становятся неблагоприятными, численность популяции резко сокращается. В дальнейшем популяция может восстановить свою численность. Во время прохождения бутылочного горлышка частоты аллелей могут сильно измениться вследствие дрейфа. В дальнейшем эти изменения сохраняются на протяжении поколений. Естественно, особенно они заметны, если популяция находится в изоляции, т.е. отсутствует миграция генов извне. Известны сообщества такого рода в человеческом обществе.


Случайные файлы

Файл
50352.rtf
76523-1.rtf
23382-1.rtf
30553.rtf
29317.rtf