Лекции по Математическому анализу (3-4)

Посмотреть архив целиком

Производная от обратной ф-ии.

Dh: Пусть в точке х0 имеет:

  1. на промежутке, содержащем х0 , обратную ф-ию

тогда в точке х0 существует , равная

Доказательство:

1. Пустьи двум различным значениям х соответствует е различных значений y .

2. Пусть дифф. в точке х0 , тогда

3. т.к.


Производная от сложной ф-ии.

Dh: Пусть:

  1. - дифф. в точке y0 .

  2. - дифф. в точке х0 .

тогда сложная ф-ия - дифф. в точке х0 и справедлива формула:

Доказательство:

1. - дифф. в точке y0

2. - дифф. в точке х0

3. - дифф. в точке х0 а значит непрерывна в этой точке.



Односторонние производные.

Заменим в определении производной предел – односторонним пределом, получится определение односторонней производной.


Производная от параметрически заданной ф-ии.

Df: Ф-ия называется заданной параметрически, если ее аналитическое выражение может быть представлено в виде:

t- параметр.

Dh: Пусть ф-ия задана параметрически, где и дифф. в точке х0 , тогда

Доказательство: Предположим. что