Двойственный симплекс-метод и доказательство теоремы двойственности (Kursovik_ISP)

Посмотреть архив целиком

ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ

РОССИЙСКОЙ ФЕДЕРАЦИИ




Кафедра математики


КУРСОВАЯ

на тему:



Двойственный симплекс-метод и доказательство теоремы двойственности.













Студент группы МЭК 1-1 - А.С. Кормаков

Научный руководитель - Солодовников А.С.










МОСКВА – 2001


Содержание

1. Двойственность в линейном программировании 3

2. Несимметричные двойственные задачи. Теорема двойственности. 4

3. Симметричные двойственные задачи 9

4. Виды математических моделей двойственных задач 11

5. Двойственный симплексный метод 12

6. Список используемой литературы 14






































1. Двойственность в линейном программировании

Понятие двойственности. С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной. Первоначальная задача называется исходной.

Связь исходной и двойственной задач состоит в том, что коэффици­енты Cj функции цели исходной задачи являются свободными членами системы ограничений двойственной задачи, свободные члены Bi систе­мы ограничений исходной задачи служат коэффициентами функции цели двойственной задачи, а матрица коэффициентов системы ограни­чений двойственной задачи является транспонированной матрицей коэффициентов системы ограничений исходной задачи. Решение двой­ственной задачи может быть получено из решения исходной и наоборот.

В качестве примера рассмотрим задачу использования ресурсов. Предприятие имеет т видов ресурсов в количестве bi (i = 1, 2, ..., m) единиц, из которых производится n видов продукций. Для производ­ства 1 ед. i-й продукции расходуется aij ед. t-гo ресурса, а ее стоимость составляет Cj ед. Составить план выпуска продукции, обеспечивающий ее максимальный выпуск в стоимостном выражении. Обозначим через xj (j =1,2, ..., n) количество ед. j-й продукций, Тогда исходную задачу сформулируем так.

Найти вектор Х =(x1, x2, …, xn), который удовлетворяет ограни­чениям

a11x1 + a12x2 + … + a1nxn b1,

a21x1 + a22x2 + … + a2nxn b2, xj 0 (j =1,2, ..., n)

…………………………………

am1x1 + am2x2 + … + amnxn bm,


и доставляет максимальное значение линейной функции

Z = C1x1 + C2x2 + … + Cnxn,

Оценим ресурсы, необходимые для изготовления продукции. За единицу стоимости ресурсов примем единицу стоимости выпускаемой продукции. Обозначим через уi (j =1,2, ..., m) стоимость единицы i-го ресурса. Тогда стоимость всех затраченных ресурсов, идущих на изготовление единицы j-й продукции, равна . Стоимость затрачен­ных ресурсов не может быть меньше стоимости окончательного продукта, поэтому должно выполняться неравенство Cj, j =1,2, ..., n. Стоимость всех имеющихся ресурсов выразится величиной . Итак, двойственную задачу можно сформулировать следующим образом.

Найти вектор Y =(y1, y2, …, yn), который удовлетворяет ограни­чениям

a11y1 + a12y2 + … + am1ym C1,

a12y1 + a22y2 + … + am2ym C2, yj 0 (i =1,2, ..., m)

…………………………………

a1ny1 + a2ny2 + … + amnym Cm,

и доставляет минимальное значение линейной функции

f = b1y1 + b2y2 + … + bmym.

Рассмотренные исходная и двойственная задачи могут быть эко­номически интерпретированы следующим образом.

Исходная задача. Сколько и. какой продукции xj (j =1,2, ..., n) необходимо произвести, чтобы при заданных стоимостях Cj (j =1,2, ..., n) единицы продукции и размерах имеющихся ресурсов bi (i =1,2, ..., n) максимизировать выпуск продукции в стоимостном выражении.

Д в о й с т в е н н а я з а д а ч а. Какова должна быть цена еди­ницы каждого из ресурсов, чтобы при заданных количествах ресурсов bi и величинах стоимости единицы продукции Ci минимизировать общую стоимость затрат?

Переменные уi называются оценками или учетными, неявными ценами.

Многие задачи линейного программирования первоначально ста­вятся в виде исходных или двойственных задач, поэтому имеет смысл говорить о паре двойственных задач линейного программирования.

2. Несимметричные двойственные задачи. Теорема двойственности.

В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной — в виде нера­венств, причем в последней переменные могут быть и отрицательными. Для простоты доказательств постановку задачи условимся записывать в матричной форме.

Исходная задача. Найти матрицу-столбец X = (x1, x2, …, xn), которая удовлетворяет ограничениям

(1.1) AX = A0, Х 0

и минимизирует линейную функцию Z = СХ.

Двойственная задача. Найти матрицу-строку Y = (y1, y2, …, ym), которая удовлетворяет ограничениям

(1.2) YA С

и максимизирует линейную функцию f = YA0

В обеих задачах C = (c1, c2, …, cn) - матрица-строка, A0 = (b1, b2, …, bm) — матрица-столбец, А = (aij) — матрица коэффициентов системы ограничений. Связь между оптимальными планами пары двой­ственных задач устанавливает следующая теорема.

Теорема (теорема двойственности). Если из пары двойствен­ных задач одна обладает оптимальным планом, то и другая имеет ре­шение, причем для экстремальных значений линейных функций выпол­няется соотношение

min Z = max f.

Если линейная функция одной из задач не ограничена, то другая не имеет решения.

Д о к а з а т е л ь с т в о. Предположим, что исходная задача об­ладает оптимальным планом, который получен симплексным методом. Не нарушая общности, можно считать, что окончательный базис со­стоит из т первых векторов A1, A2, ..., Am. Тогда последняя симплекс­ная таблица имеет вид табл. 1.1.

Т а б л и ц а 1.1

i

Базис

С базиса

A0

C1

C2

Cm

Cm+1

cn

A1

A2

Am

Am+1

An

1

2

.

.

.

m

A1

A2

.

.

.

Am

C1

C2

.

.

.

Cm

x1

x2

.

.

.

xm

1

0

.

.

.

0

0

1

.

.

.

0

...

...

.

.

.

.

0

0

.

.

.

1

x1, m+1

x2, m+1

.

.

.

xm, m+1

.

.

.

x1n

x2n

.

.

.

xmn

m+1

Zi - Cj

Z0

Z1 – C1

Z2 – C2

...

Zm – Cm

Zm+1 – Cm+1

Zn – Cn


Пусть D — матрица, составленная из компонент векторов оконча­тельного базиса A1, A2, ..., Am; тогда табл. 1.1 состоит из коэффици­ентов разложения векторов A1, A2, ..., An исходной системы по векто­рам базиса, т. е. каждому вектору Aj в этой таблице соответствует та­кой вектор Xj что

(1.3) Aj = DXj (j= 1,2, ,.., n).

Для оптимального плана получаем

(1.4) A0 = DX*,

где X* = (x*1, x*2, …, x*m).

Обозначим через матрицу, составленную из коэффициентов раз­ложения векторов Аj (j = 1, 2, ..., n), записанных в табл. 1.1. Тогда, учитывая соотношения (1.3) и (1.4), получаем:

(1.5) A = D, D-1A = ,

(1.6) A0=DX*; D-1A0 = X*,

(1.7) min Z= C*X*,

(1.8) = C*—C 0,

где С* = (C*1, C*2, …, C*m), С = (C1, C2, …, Cm, Cm+1, …, Cn), a = (C*X1 C1; С*Х2 - С2, ..., C*Xn – Cn) = (Z1 С1; Z2 - C2; ..., Zn — Cn) — вектор, компоненты которого неположительны, так как они совпадают с ZjCj 0, соответствующими оптимальному плану.

Оптимальный план исходной задачи имеет вид X* = D-1 А0, поэтому оптимальный план двойственной задачи ищем в виде

(1.9) Y* = C*D-1.

Покажем, что Y* действительно план двойственной задачи. Для этого ограничения (1.2) запишем в виде неравенства YA — С 0, в левую часть которого подставим Y*. Тогда на основании (1.9), (1.5) и (1.8) получим

Y* АС = С* D-1АС = С* - С 0,

откуда находим Y*A С.

Так как Y* удовлетворяет ограничениям (1.2), то это и есть план двойственной задачи. При этом плане значение линейной функции двой­ственной задачи f (Y*) = Y*A0. Учитывая соотношения (1.9), (1.6) и (1.7), имеем

(1.10) f (Y*) = Y*A0 = C*D-1 A0 = C*X* = min Z(X).

Таким образом, значение линейной функции двойственной задачи от Y* численно равно минимальному значению линейной функции исходной задачи.

Докажем теперь, что Y* является оптимальным планом. Умножим (1.1) на любой план Y двойственной задачи, а (1.2) — на любой план X исходной задачи: YAX=YA0=f (Y), YAX СХ = Z (X), отсюда следует, что для любых планов Х и Y выполняется неравенство

(1.11) f (Y) Z (X).

Этим же соотношением связаны и экстремальные значения max f (Y) min Z (Х). Из последнего неравенства заключаем, что максималь­ное значение линейной функции достигается только в случае, если max f (Y) = min Z (X), но это значение [см. (1.10)] f (Y) достигает при плане Y*, следовательно, план Y* — оптимальный план двойственной задачи.


Случайные файлы

Файл
58125.rtf
24710-1.rtf
175910.rtf
~1.DOC
10044-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.