Вычислительные методы алгебры (лекции) (5)

Посмотреть архив целиком

§5. Прямая задача теории погрешностей

(функции от приближенных значений аргументов).


Пусть функция определена и непрерывно-дифференцируема по всем переменным в области .

Переменные заданы своими приближениями:

и точка

Известна погрешность элементов . Необходимо оценить погрешность .

.

Предположим, что малы, поэтому их произведениями, квадратами и более высокими степенями можно пренебречь.

Если , то последнюю часть можно поделить на функцию

.

Пример. Вычислить величину погрешности приближенного значения большего корня уравнения.

В приближенной записи используют только верные цифры, ????????????????????, обусловленные погрешностью приближенных значений коэффициентов.

,

.

Теперь обозначим .

Рассмотрим


.


Случайные файлы

Файл
istoria.DOC
13055-1.rtf
148220.rtf
25628.doc
91490.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.