Математические понятия (9206-1)

Посмотреть архив целиком

Математические понятия

Термин "понятие" обычно применяется для обозначения мысленного образа некоторого класса вещей, процессов, отношений объективной реальности или нашего сознания.

Математические понятия отражают в нашем мышлении определенные формы и отношения действительности, абстрагированные от реальных ситуаций.

Каждое понятие объединяет в себе класс объектов (вещей, отношений) - объем этого понятия - и характеристическое свойство, присущее всем объектам этого класса, и только им, - содержание этого понятия. Например, понятие "треугольник" соединяет в себе класс .всевозможных треугольников (объем этого понятия) и характеристическое свойство - наличие трех сторон, трех вершин, трех углов (содержание понятия); понятие "уравнение" соединяет в себе класс всевозможных уравнений (объем понятия) и характеристическое свойство - равенство, содержащее одну или несколько переменных (содержание понятия).

Содержание понятия раскрывается с помощью определения, объем - с помощью классификации. Посредством определения и классификации отдельные понятия организуются в систему взаимосвязанных понятий.

Формирование понятий - сложный психологический процесс, начинающийся с образования простейших форм познания - ощущений - и протекающий часто по следующей схеме: ощущения - восприятие - представление - понятие.

Обычно разделяют этот процесс на две ступени: чувственную, состоящую в образовании ощущений, восприятия и представления, и логическую, заключающуюся в переходе от представления к понятию с помощью обобщения и абстрагирования.

Чувственная ступень в процессе формирования понятий соответствует первому этапу пути познания вообще, т. е. "живому созерцанию", и поэтому ее осуществление требует широкого применения наглядности. Если ученику никогда не показывали модель куба или предметы, имеющие форму куба, то у него не может образоваться представления, а следовательно, и понятия куба.

Процесс формирования понятий будет эффективным, если он ориентирует учащихся на обобщение и абстрагирование существенных признаков (характеристического свойства) формируемого понятия.

Рассмотрим процесс формирования понятий на примере понятия куба.

Детям (6-7лет) показывают много предметов, отличающихся формой, размерами, окраской, материалом, из которого они сделаны, причем таких, что одни из них имеют форму куба, а другие нет. Дети, после того как им показывают на одно из этих тел и говорят, что это куб, безошибочно отбирают все те тела, которые имеют такую же форму, пренебрегая различиями, касающимися размера, окраски, материала. Здесь выделение из класса предметов подкласса, отождествление тел производится по одному еще недостаточно проанализированному признаку - внешней форме. Дети еще не знают свойств куба, они распознают его только по форме.

Дальнейшая работа по формированию понятия куба состоит в анализе этой формы с целью выяснения ее свойств. Учащимся предлагают путем наблюдения найти, что есть общего у всех отобранных тел, имеющих форму куба, чем они отличаются от остальных. Устанавливается, что у каждого куба 8 вершин, 6 граней. Но у некоторых тел, которые мы не отнесли к кубам, тоже 8 вершин и 6 граней. Оказывается, у куба все грани - квадраты (эта работа обычно проводится после аналогичной работы по выделению класса квадратов из множества плоских фигур).

Остается один шаг к образованию понятия куба - переход от представления к понятию путем абстрагирования, т. е. отделения общих свойств от г^рочих, несущественных. Разумеется, на начальном этапе обучения нельзя еще говорить о полном абстрагировании этих свойств, у детей еще не образовывается понятие куба в чистом виде, они еще не определяют куб и противопоставляют его прямоугольному параллелепипеду с различными измерениями. В дальнейшем же, когда будет сконструирована логически упорядоченная система геометрических понятий (в рамках систематического курса геометрии), учащиеся узнают, что куб - это вид прямоугольного параллелепипеда. В этом - диалектика развития понятий.

Приведенный пример показывает, что процесс формирования понятий, как правило, длительный процесс, способствующий развитию обобщающей и абстрагирующей деятельности учащихся.

Однако формирование математических понятий не всегда протекает по приведенной выше схеме, начинающейся с ощущений. В частности, когда формируемое понятие связано, в той или иной форме, с категорией бесконечности (как, например, понятия прямой, плоскости, плотности множества рациональных чисел, предела и др.), то чувственная ступень играет меньшую роль, так как мы не в состоянии воспринимать бесконечное (ни в какой форме), и наглядность из средства, способствующего формированию понятия, иногда становится тормозящим фактором.

Например, бесконечность множества рациональных чисел, лежащих между любыми двумя рациональными числами, не подкрепляется, а, наоборот, "опровергается" конкретным восприятием конечного отрезка, содержащего это множество. Свойство плотности множества рациональных чисел нельзя обнаружить опытным путем, оно не подтверждается наглядными геометрическими представлениями, а устанавливается логически. Этот и другие многочисленные примеры подтверждают выводы наших психологов о том, что восприятие наглядного материала в силу объективных особенностей этого материала может играть не только положительную, но и отрицательную роль.

Заключительным этапом формирования понятия, как правило, является его определение.

В математике и в обучении математике применяются различные способы определения понятий.

Наиболее часто, особенно в обучении геометрии, встречается определение "через ближайший род и видовое отличие". Примером такого определения является следующее: Прямоугольник есть параллелограмм с прямым углом. Как видно, это определение состоит из двух частей: "прямоугольник" - определяемое понятие и "параллелограмм с прямым углом" - определяющее понятие. Связка "есть" (иногда вместо "прямоугольник есть..." говорят "прямоугольником называется...") означает здесь, что термин "прямоугольник" (вновь введенный) обозначает то же понятие, что и выражение "параллелограмм с прямым углом", составленное из ранее уже известных терминов ("параллелограмм", "прямой угол").

Анализируя определяющее понятие "параллелограмм с прямым углом", выделяем понятие "параллелограмм" (ближайший род) и свойство "наличие прямого угла" (видовое отличие). Название "ближайший род" оправдано тем, что не выделено другое понятие, объем которого включается в множество параллелограммов и включает множество прямоугольников. Если бы мы определили прямоугольник как четырехугольник, у которого противоположные стороны попарно параллельны и имеется прямой угол, то мы получили бы, как видно, более громоздкое определение именно потому, что понятие "четырехугольник" не является ближайшим родом для прямоугольника (имеется понятие "параллелограмм", объем которого включается в множество четырехугольников и включает множество прямоугольников), и поэтому усложнилось характеристическое свойство (видовое отличие).

Общая схема определения "через ближайший род и видовое отличие" может быть записана на языке множеств (классов).:

В={х | х А и Р(х)}

(класс В состоит из объектов х, принадлежащих А - ближайшему роду - и обладающих свойством Р - видовым отличием).

В нашем примере В - определяемый класс прямоугольников (или свойство "быть прямоугольником"), А - класс параллелограммов (или свойство "быть параллелограммом"), Р - свойство "наличие прямого угла".

Такое определение является явным определением, в котором четко (явно) выделены определяемое и определяющее понятия. Оно позволяет нам заменить при необходимости одно понятие другим. Очень часто такой заменой пользуемся в доказательствах теорем.

Однако не все математические понятия могут определяться таким образом. Процесс формально-логического определения, как видно из приведенного выше примера, есть процесс сведения одного понятия к другому, с более широким объемом, второго - к третьему, с еще более широким объемом, и т. д. Процесс сведения не может быть бесконечным. Должны быть некоторые исходные, первоначальные понятия, которые неопределяемы через другие понятия данной теории, так как им не предшествуют никакие другие понятия этой теории. В процессе обучения должны создаваться такие педагогические ситуации, которые помогли бы учащимся открыть характерную особенность системы математических понятий, связанную с дедуктивным построением теории. Для этой цели можно использовать различный конкретный материал. Например, можно построить такую последовательность определений:

П1: квадрат - ромб с прямым углом;

П2: ромб - параллелограмм с равными смежными сторонами;

П3: параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны;

П4: четырехугольник - многоугольник с четырьмя сторонами;

П5: многоугольник - фигура, ограниченная замкнутой ломаной линией;

П6: фигура - множество точек.

Как видно, этот процесс сведения одних понятий к другим доходит до понятий "множество" и "точка", которые принимаются за первоначальные и именно поэтому не определяются через другие понятия.

Итак, первоначальные, исходные понятия не определяются явным образом через другие понятия данной теории. Это, однако, не означает, что они никак не определяются. В аксиомах выражаются основные свойства исходных понятий и отношений между ними, которыми пользуются при развертывании теории на базе этих аксиом, т. е. при доказательстве теорем и определении других (определяемых) понятий. Поэтому системы аксиом можно рассматривать как неявные, косвенные определения исходных понятий. Таким образом, когда говорят, например, что понятия "точка" и "прямая" - исходные понятия и поэтому не определяются, надо это понимать точнее: "не определяются явно через другие понятия".


Случайные файлы

Файл
1_7.docx
82792.rtf
6915-1.rtf
30642.rtf
107320.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.