Теория игр и принятие решений (7865-1)

Посмотреть архив целиком

Теория игр и принятие решений

В зависимости от условий внешней среды и степени информативности лица принимающего решение (ЛПР) производится следующая классификация задач принятия решений:

а) в условиях риска;

б) в условиях неопределённости;

в) в условиях конфликта или противодействия (активного противника).

Теория полезности и принятия решений.

Принятие решений в условиях риска.

Критерий ожидаемого значения.

Использование критерия ожидаемого значения обусловлено стремлением максимизировать ожидаемую прибыль (или минимизировать ожидаемые затраты). Использование ожидаемых величин предполагает возможность многократного решения одной и той же задачи, пока не будут получены достаточно точные расчётные формулы. Математически это выглядит так: пусть Х случайная величина с математическим ожиданием MX и дисперсией DX. Если x1,x2,...,xn  значения случайной величины (с.в.) X, то среднее арифметическое их (выборочное среднее) значений имеет дисперсию . Таким образом, когда n  

 0 и  MX.

Другими словами при достаточно большом объёме выборки разница между средним арифметическим и математическим ожиданием стремится к нулю (так называемая предельная теорема теории вероятности). Следовательно, использование критерия ожидаемое значение справедливо только в случае, когда одно и тоже решение приходится применять достаточно большое число раз. Верно и обратное: ориентация на ожидания будет приводить к неверным результатам, для решений, которые приходится принимать небольшое число раз.

Пример 1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ПЭВМ, чтобы минимизировать потери из-за неисправности. В случае если ремонт будет производится слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок.

Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. В этом и состоит элемент риска.

Математически это выглядит так: ПЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Необходимо определить оптимальное значение Т, при котором минимизируются общие затраты на ремонт неисправных ПЭВМ и проведение профилактического ремонта в расчёте на один интервал времени.

Пусть рt  вероятность выхода из строя одной ПЭВМ в момент t, а nt  случайная величина, равная числу всех вышедших из строя ПЭВМ в тот же момент. Пусть далее С1  затраты на ремонт неисправной ПЭВМ и С2  затраты на профилактический ремонт одной машины.

Применение критерия ожидаемого значения в данном случае оправдано, если ПЭВМ работают в течение большого периода времени. При этом ожидаемые затраты на один интервал составят

ОЗ = ,

где M(nt)  математическое ожидание числа вышедших из строя ПЭВМ в момент t. Так как nt имеет биномиальное распределение с параметрами (n, pt), то M(nt) = npt . Таким образом

ОЗ =

Необходимые условия оптимальности T* имеют вид:

ОЗ (T*-1)  ОЗ (T*),

ОЗ (T*+1)  ОЗ (T*).

Следовательно, начиная с малого значения T, вычисляют ОЗ(T), пока не будут удовлетворены необходимые условия оптимальности.

Пусть С1 = 100; С2 = 10; n = 50. Значения pt имеют вид:


T

рt

ОЗ(Т)

1

0.05

0

2

0.07

0.05

375

3

0.10

0.12

366.7

4

0.13

0.22

400

5

0.18

0.35

450


T* 3 , ОЗ(Т*)  366.7


Следовательно профилактический ремонт необходимо делать через T*=3 интервала времени.

Критерий ожидаемое значение  дисперсия

Критерий ожидаемого значения можно модифицировать так, что его можно будет применить и для редко повторяющихся ситуаций .

Если х  с. в. с дисперсией DX, то среднее арифметическое имеет дисперсию , где n  число слогаемых в . Следовательно, если DX уменьшается, и вероятность того, что близко к MX, увеличивается. Следовательно, целесообразно ввести критерий, в котором максимизация ожидаемого значения прибыли сочетается с минимизацией её дисперсии.


Пример 2. Применим критерий ожидаемое значение  дисперсия для примера 1. Для этого необходимо найти дисперсию затрат за один интервал времени, т.е. дисперсию

зТ =

Т.к. nt, t =  с.в., то зТ также с.в. С.в. nt имеет биномиальное распределение с M(nt) = npt и D(nt) = npt(1pt). Следовательно,

D(зТ) = D = D() =

= = = n  ,

где С2n = const.

Из примера 1 следует, что

М(зТ) = М(з(Т)).

Следовательно искомым критерием будет минимум выражения


М(з(Т)) + к D(зТ).

Замечание. Константу к можно рассматривать как уровень не склонности к риску, т.к. к определяет степень возможности дисперсии Д(зТ) по отношению к математическому ожиданию. Например, если предприниматель, особенно остро реагирует на большие отрицательные отклонения прибыли вниз от М(з(Т)), то он может выбрать к много больше 1. Это придаёт больший вес дисперсии и приводит к решению, уменьшающему вероятность больших потерь прибыли.



При к =1 получаем задачу

По данным из примера 1 можно составить следующую таблицу


Т

pt

pt2

М(з(Т))+D(з(Т))

1

0.05

0.0025

0

0

500.00

2

0.07

0.0049

0.05

0.0025

6312.50

3

0.10

0.0100

0.12

0.0074

6622.22

4

0.13

0.0169

0.22

0.0174

6731.25

5

0.18

0.0324

0.35

0.0343

6764.00

Из таблицы видно, что профилактический ремонт необходимо делать в течение каждого интервала Т*=1.

Критерий предельного уровня.

Критерий предельного уровня не дает оптимального решения, максимизирующего, например, прибыль или минимизирующего затраты. Скорее он соответствует определению приемлемого способа действий.


Пример 3. Предположим, что величина спроса x в единицу времени (интенсивность спроса) на некоторый товар задаётся непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, в дальнейшем возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться очень большими. В обоих случаях возможны потери.

Т.к. определить потери от дефицита очень трудно, ЛПР может установить необходимый уровень запасов таким образом, чтобы величина ожидаемого дефицита не превышала А1 единиц, а величина ожидаемых излишков не превышала А2 единиц. Иными словами, пусть I  искомый уровень запасов. Тогда

ожидаемый дефицит = ,

ожидаемые излишки =.

При произвольном выборе А1 и А2 указанные условия могут оказаться противоречивыми. В этом случае необходимо ослабить одно из ограничений, чтобы обеспечить допустимость.

Пусть, например,


Тогда

= = 20(ln + 1)


= = 20(ln + 1)

Применение критерия предельного уровня приводит к неравенствам

ln I   ln 20   1 = 1.996 


ln I   ln 10   1 = 1.302 

Предельные значения А1 и А2 должны быть выбраны так, что бы оба неравенства выполнялись хотя бы для одного значения I.

Например, если А1 = 2 и А2 = 4, неравенства принимают вид

ln I   1.896

ln I   1.102

Значение I должно находиться между 10 и 20, т.к. именно в этих пределах изменяется спрос. Из таблицы видно, что оба условия выполняются для I, из интервала (13,17)


I

10

11

12

13

14

15

16

17

18

19

20

ln I 

1.8

1.84

1.88

1.91

1.94

1.96

1.97

1.98

1.99

1.99

1.99

ln I 

1.3

1.29

1.28

1.26

1.24

1.21

1.17

1.13

1.09

1.04

0.99


Случайные файлы

Файл
187061.rtf
Candid_3_kurs.doc
100504.rtf
130363.rtf
142915.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.