Экзаменационные билеты (Logika)

Посмотреть архив целиком

1. Предмет и значение логики

Логика как средство познания объективного мира изучает абстрактное мышление, исследует его формы (понятия, суждения и умозаключения) и законы, в которых происходит отражение мира в процессе мышления.

Предметом теоретической логики, то есть областью ее исследования, являются логические формы, в которых протекает теоретическое познание, - понятия, суждения и рассуждения.

Методологическое значение теоретической логики заключается в том, что в сфере ее исследования разрабатываются, анализируются методологически важные понятия – определение, классификация, доказательство, гипотеза, теория и т.д., которые являются необходимым инструментарием, конкретными операциями научно-исследовательской практики.


2. Логическая грамматика: семантические категории и функторы

Подразделение речевых оборотов на семантические категории производится в зависимости от того, что эти обороты означают. Два выражения считаются относящимися к одной и той же семантической категории рассматриваемого языка, если замена одного из них другим в произвольном осмысленном предложении не превращает это предложение в бессмысленное. Наоборот, два выражения всегда относятся к разным категориям, если подстановка одного из них вместо другого ведет к утрате осмысленности.

Согласно теории семантических категорий, каждое правильно построенное выражение языка принадлежит одной и только одной из семантических категорий. В принципе этих категорий бесконечное число, и они составляют весьма разветвленную иерархию.

В нее входят две основные категории и бесконечная совокупность так называемых функторных категорий. К основным относятся категория имен и категория предложений (высказываний).

Оставляя в стороне сложные и спорные детали теории семантических категорий, можно ограничиться выделением трех основных категорий языковых выражений: имен, предложений (высказываний) и функторов.

Именами являются языковые выражения, подстановка которых в форму “S есть P” вместо переменных S и P дает осмысленное предложение.

Предложение (высказывание) – это языковое выражение, являющееся истинным или ложным

Функтор – это языковое выражение, не являющееся ни именем, ни высказыванием и служащее для образования новых имен или высказываний из уже имеющихся. Например, слово «есть» - это функтор, поскольку оно не представляет собой имени или высказывания, но позволяет из двух имен получить высказывание. Функторы, позволяющие из имен или высказываний получать новые высказывания, называются пропозициональными.


3. Имена и виды имен

Имя – это слово или словосочетание, обозначающее какой-либо определенный предмет или класс однородных предметов. Хотя предметы изменчивы, текучи, в них сохраняется качественная определенность, относительно покоящаяся сущность, которую и обозначает имя данного предмета. Выражение языка является именем, если оно может использоваться в качестве подлежащего или именной части сказуемого в простом предложении “S есть P” (S – подлежащие, P – сказуемое).

Имена различаются между собой в зависимости о того, сколько предметов они означают. Единичные имена обозначают один и только один предмет. Общие имена обозначают более чем один предмет. Единичным именем является к примеру слово «Солнце», обозначающее единственную звезду в Солнечной системе. К общим относятся имена «человек», «женщина», «школьник» и т.п. Все эти имена связаны с множествами, или классами, предметов. При этом имя относится не к множеству как единому целому, а к каждому входящему в него предмету.

Среди общих имен особое значение имеет понятия.

Понятие представляет собой общее имя с относительно ясным и устойчивым содержанием, используемое в обычном языке или в языке науки. Отчетливой границы между теми именами, которые можно назвать понятиями, и теми, которые не относятся к понятиям, не существует.

Имена можно разделить также на пустые, или беспредметные, и непустые. Пустое имя не обозначает ни одного реально существующего предмета. Имя, не являющееся пустым, отсылает хотя бы к одному реальному объекту. К пустым относятся, к примеру, имена «Зевс», «Пегас», «кентавр», созданные мифологией и обозначающие вымышленных, отсутствующих в реальном мире существ. Пустыми являются также имена «идеальный газ», «абсолютно черное тело», «точка», «линия», используемые в физике и математике и обозначающие не реально существующие, а идеализированные предметы.

Имена подразделяются далее на конкретные и абстрактные. Конкретное имя обозначает физические тела или живые существа. Абстрактное имя обозначает объекты, не являющиеся индивидами. К конкретным относятся, например, имена «стол», «тетрадь», «лес», «звезда» и т. п. Абстрактными являются имена свойств, отношений, классов, чисел и т. п.: слово «черный» может рассматриваться как обозначение свойства «черноты». Абстрактными являются также имена «человечность», «справедливость», «законность» и т. п.


4. Отношения между именами

Имена относятся в различных отношениях друг к другу. Между объемами двух произвольных имен, которые есть какой-то смысл сопоставлять друг с другом, имеет место одно и только одно из следующих отношений: равнозначность, пересечение, подчинение (два варианта) и исключение.

Равнозначными являются два имени, объемы которых полностью совпадают. Иными словами,

равнозначные имена отсылают к одному и тому же классу предметов, но делают

э


S,P

то разными способами. («квадрат» и «равносторонний прямоугольник»).

Равнозначность означает совпадение объемов двух имен, но не их содержаний.

Например, объемы имен «сын» и «внук» совпадают (каждый сын есть чей-то внук и каждый внук – чей-то сын), но содержания их различны.


В отношении пересечения находятся два имени, объемы которых частично совпадают. Пересекаются, в частности, объемы имен «летчик» и «космонавт»: некоторые летчики являются космонавтами, есть летчики, не являющиеся космонавтами, и есть космонавты, не являющиеся летчиками.

S

P








В отношении подчинения находятся имена, объем одного из которых полностью входит в объем другого. В отношении подчинения находятся, к примеру, имена «треугольник» и «прямоугольный треугольник»: каждый прямоугольный треугольник является треугольником, но не каждый реугольник прямоугольный. Если в отношении подчинения находятся общие имена, то подчиняющее имя называется родом, а подчиненное – видом. Имя «треугольник» есть род для вида «прямоугольный треугольник».







В отношении исключения находятся имена, объемы которых полностью исключают друг друга. Исключают друг друга имена «трапеция» и «пятиугольник», «человек» и «планета» и т. п.

Можно выделить два вида исключения:

  1. Исключающие объемы дополняют друг друга так, что в сумме

дают весь ообъем рода, видами которого они являются. Имена, объемы которых исключают друг друга, исчерпывая объем родового понятия, называют противоречащими («умелый» и «неумелый», «стойкий» и «нестойкий» и т. п.).

2. Исключающие имена составляют в сумме только часть объема того рода, видами которого они являются. Имена, объемы которых исключают друг друга, не исчерпывая объем родового имени, называются противоположными («простое число» и «четное число», «красный» и «белый»).



5. Определения имен и его правила

Определение – логическая операция, раскрывающая содержание имени. Определить имя – значит указать, какие признаки входят в его содержание.

Явные определения имеют форму равенства – совпадения двух имен (понятий). Общая схема таких определений: «S есть (по определению) P». Здесь S и P – два имени, причем не имеет значения, выражается каждое из них одним словом или сочетанием слов.

Неявные определения не имеют формы равенства двух имен. Особый интерес среди неявных определений имеют контекстуальные и остенсивные определения. Всякий отрывок текста, всякий контекст, в котором встречается интересующее нас имя, является в некотором смысле неявным его определением. Остенсивные определения – это определения путем показа. Определения такого типа напоминают обычные контекстуальные определения. Но контекстом здесь является не отрывок какого-то текста, а ситуация, в которой встречается объект, обозначаемый интересующим нас понятием.

В явных определениях отождествляются, приравниваются друг к другу два имени. Одно – определяемое имя, содержание которого требуется раскрыть, другое – определяющее имя, решающее эту задачу.

Классическими определениями называют явные определения через род и видовое отличие. Общая схема классических определений: «S есть P иM». Здесь S – определяемое имя, P – имя, более общее по отношению к S (род), M – такие признаки, которые выделяют предметы, обозначаемые именем S среди всех предметов, обозначаемых именем (P).

К явным определениям предъявляется ряд достаточно простых и очевидных требований. Их называют обычно правилами определения.

1. Определяемое и определяющее понятия должны быть взаимозаменяемы. Для определений через род и видовое отличие это правило формулируется как правило соразмерности определяемого и определяющего понятий: совокупности предметов, охватываемые ими, должны быть одними и теми же. («голкипер» и «вратарь», «нонсенс» и «бессмыслица»).

Если объем определяющего понятия шире, чем объем определяемого, говорят об ошибке слишком широкого определения («ромб – плоский четырехугольник»). Если объем определяющего понятия уже объема определяемого, имеет место ошибка слишком узкого определения («ромб – плоский четырехугольник, у которого все стороны и все углы равны»).

2. Нельзя определять имя через само себя или определять его через такое другое имя, которое, в свою очередь, определяется через него. Это правило запрещает порочный круг.

3. Определение должно быть ясным. Это означает, что в определяющей части могут использоваться только имена, известные и понятные тем, на кого рассчитано определение. Желательно также, чтобы в ней не встречались образы, метафоры, сравнения, т. е. Все то, что не предполагает однозначного и ясного истолкования.


Случайные файлы

Файл
26137-1.rtf
145403.rtf
57081.rtf
zabol_oda_menisk.doc
57765.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.