Лекции 6 (Глава7-n_123)

Посмотреть архив целиком

Глава 7

Электрические измерения и приборы

В современных условиях контроль за технологическими процессами, потреблением электриче­ской энергии, режимом работы электрооборудования, измерением неэлектрических величин осуще­ствляется с помощью электроизмерительных приборов. Эти приборы измеряют ток, напряжение, мощность, cos(j) , частоту, электрическую энергию и т.д.

Различают электроизмерительные приборы непосредственной оценки и приборы сравнения.

7.1. Системы электроизмерительных приборов непосредственной оценки.

Электрические измерения существенно упрощаются при использовании приборов непо­средственной оценки (прямого отсчета), показывающих численное значение измеряемой величины по их отсчетному устройству (по положению стрелки на шкале или по цифровому отсчетному устрой­ству). Электроизмерительный прибор этого типа независимо от назначения и принципа действия вклю­чает в себя измерительную цепь, измерительный механизм и отсчетное устройство.

Измерительная цепь служит для преобразования измеряемой электрической величины в величину, непосред­ственно воздействующую на измерительный механизм. Измерительный механизм преобразует электрическую величину в угол поворота подвижной части отсчетного устройства, служащего для визуального представления значений измеряемой величины в зависимости от угла поворота подвижной части.

В простейшем приборе, например в амперметре, катушка его включается последовательно в ветвь электрической цепи, где необходимо измерить ток. В более сложных приборах измерительные цепи содержат кроме катушек конденсаторы, резисторы и т.п.

Измерительный механизм прибора имеет подвижную часть, каждому положению которой соот­ветствует определенное значение измеряемой величины. С подвижной частью связаны стрелка или другое указательное устройство (световой луч, цифровой счетный механизм). Перемещение подвиж­ной части измерительного механизма происходит в результате взаимодействия магнитных (или элек­трических) полей в приборе. Это взаимодействие создает вращающий момент Мвр, зависящий от зна­чения измеряемой величины.

Для того, чтобы подвижная часть вместе со стрел­кой занимала определенное положение, соответствующее значению измеряемой величины, необходимо уравновесить вращающий момент противодействующим моментом Мпр, который зачастую создается ме­ханическими элементами (пружинами, растяжками и др.). Значение этого момента пропорционально углу закручивания пружины и при установившемся отклонении Мврпр.

Механические колебания подвижной часть прибора после внезапного нарушения равновесия моментов, вызванного изменением измеряемой величины, гасятся (демпфируются) успокоителями.

По принципу действия различают следующие системы электроизмерительных приборов: магнито­электрическую, электромагнитную, электродинамическую, индукционную и др.

7.1.1. Магнитоэлектрическая система.

В магнитоэлектрических приборах вращающий момент создается взаимодействием магнитного поля постоянного магнита и измеряемого постоянного тока в катушке механизма. В воздушном зазоре 1 (рис. 7.1) между неподвижным сталь­ным цилиндром 2 и полюсными наконечниками NS неподвижного постоянного магнита расположена алюминиевая рамка с об­моткой 3, состоящей из w витков изолированной проволоки.

Рамка жестко соединена с двумя полуосями О и О', которые своими концами опираются о под­шипники. На полуоси О за­креплены указательная стрелка 4 и две спиральные пружинки 5 и 5', через которые к катушке подводится измеряемый ток I, противовесы 6. Полюсные наконечники NS и стальной цилиндр 2 обеспечивают в зазоре 1 равномерное радиальное магнитное поле с индукцией В. В результате взаимодействия магнитного поля с током в проводниках обмотки 3 создается вращаю­щий момент. Рамка с обмоткой при этом поворачивается и стрелка отклоняется на угол a. Электро­магнитная сила, действую­щая на обмотку, равна: Fэм=wBlI.

Вращающий момент, создаваемый силой Fэм:

Mвр = Fэмd = wBlI = C1I1 ,

где d и l ширина и длина рамки (обмотки); C1 — коэф­фициент, зависящий от числа витков w, размеров обмотки и магнитной индукции В.

Повороту рамки противодействуют спиральные пружинки 5 и 5', создающие противодействую­щий момент, пропорцио­нальный углу закручивания a:

Мпр=С2a ,

где С2 — коэффициент, зависящий от жесткости пружинок.

Стрелка устанавливается на определенном делении шкалы при равенстве моментов Мвр=Mпр, т.е. когда С1I=С2a.

Угол поворота стрелки

пропорционален току. Следовательно, у приборов магнитоэлек­трической системы шкала равномер­ная, что является их до­стоинством.

При измене­нии направления тока изменяется направление вращающего момента (определяемое прави­лом левой руки). При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющие­ся по значению и направлению механические силы, среднее зна­чение которых равно нулю. В результате стрелка прибора не будет отклоняться от нуле­вого положения. Поэтому эти при­боры нельзя применять непосредственно для измерений в це­пях переменного тока.

Успокоение (демпфирование) стрелки в приборах магнитоэлектрической системы происходит благодаря тому, что при перемещении алюминиевой рамки в магнитном поле постоян­ного магнита NS в ней индуктируются вихревые токи. В резуль­тате взаимодействия этих токов с магнитным полем возникает момент, действующий на рамку в направлении, противополож­ном ее перемещению, вызывая быстрое успокоению колебаний рамки.

Достоинствами приборов магнитоэлектрической системы являются: точность показаний, малая чувствитель­ность к посторонним магнитным полям, равномерность шкалы, незначительное собственное потреб­ление мощности. К недостаткам следует отнести необходимость применения специальных преобра­зователей при измерении в цепях переменного тока и чувствительность к перегрузкам.

7.1.2. Электромагнитная система.

Принцип действия элек­тромагнитных приборов основан на втягивании стального сер­дечника в неподвижную обмотку с током. Неподвижный элемент прибора — обмотка 1, выполненная из изоли­рованной проволоки, включается в электрическую цепь (рис. 7.2).

Подвижный элемент — стальной сердечник 2, имеющий форму лепестка,— эксцентрично укреп­лен на оси О. С этой же осью жестко соединены указательная стрелка 3, спиральная пружинка 4, обеспечивающая противодействующий момент, и поршень 5 успокоителя. Ток I в витках обмотки 1 образует магнитный поток, сердечник 2 намагничивается и втягивается в обмотку. При этом ось О поворачивается и стрелка прибора отклоняется на угол a.

Магнитная индукция В в сердечнике (при отсутствии насы­щения) пропорциональна току обмотки. Сила F, с которой сер­дечник втягивается в обмотку, зависит от тока и магнитной ин­дукции В в сер­дечнике. Приближенно можно принять, что сила F, а следовательно, и обусловленный ею вращаю­щий момент пропорциональны квадрату тока в катушке:

Мвр=СI 2.

Противодействующий момент, уравновешивающий вращающий момент, пропорционален углу a. В связи с этим угол отклонения стрелки нахо­дится в квадратичной зависи­мости от тока; шкала при­бора оказывается неравномерной.

Д
ля успокоения подвижной части прибора обычно приме­няют
воздушный демпфер. Он состоит из цилиндра 6 и поршня 5, шток которого укреплен на оси О. Сопротивление воздуха, оказываемое перемещению поршня в цилиндре, обеспечи­вает быстрое успокоение стрел­ки.

Для ослабления влияния посторонних магнитных полей в неко­торых приборах на оси подвижной части (рис. 7.3) укреплены два оди­наковых сердечника, каждый из которых размещен в магнитном поле соответствующей обмотки (1 и 2), которые включены между собой последовательно.

Направле­ние намотки обмоток выполнено так, что их магнитные поля Ф1 и Ф2 направлены в противополож­ные стороны. Моменты, созданные магнитными полями каждой обмотки, действуют на ось согласно Mвр1 + Mвр2 = Mвр. Постороннее магнитное поле Фвн ослабляет поток Ф1, но усиливает поток Ф2. В результате общий вращающий момент Мвр остается неизменным и зависит от изме­ряемого тока I. Приборы такой конструкции называются астатиче­скими. Для уменьшения погрешности измерений, вносимой посторон­ними магнитными полями, некоторые приборы экранируют, помещая их в сталь­ные корпуса.

Достоинства приборов элек­тромагнитной системы: просто­та конструкции, пригодность для изме­рения в цепях постоян­ного и переменного тока, надежность в эксплуатации. К недостат­кам относятся неравномерность шкалы, влияние посторонних магнитных полей на точность показаний. Последнее обусловле­но тем, что магнитное поле обмотки расположено в воздушной среде и поэтому его маг­нитная индукция невелика.

7.1.3. Электродинамическая система.

Приборы этой системы (рис. 7.4,а) состоят из двух обмоток: неподвижной 1 и подвиж­ной 2. Подвижная обмотка укреплена на оси OO' и расположе­на внутри неподвижной обмотки. На оси OO' подвижной об­мотки укреплены указательная стрелка 3 и спиральные пружинки 4 и 4', через которые подводится ток к обмотке 2. Эти же пружинки создают противодействующий момент Мпр, пропор­циональный углу закручивания a. Принцип действия прибора (рис. 7.4,б) основан на взаимодействии тока I2 под­вижной обмотки с магнитным потоком Ф1, неподвижной обмотки.

При постоянном токе электромагнитная сила Fэм, действую­щая на проводники подвижной об­мотки, пропорциональна то­ку и магнитному потоку Ф1. Поскольку поток Ф1 пропорцио­нален току I1 неподвижной обмотки, вращающий момент, действующий на подвижную обмотку, пропорционален про­изведению токов обмоток:

Мвр= С' Ф1I2 = С"I1I2 , где С' и С" — коэффициенты пропорциональности.

При переменном токе вращающий момент пропорционален произведению мгновенных значе­ний токов:

i1 = I1mּsin(ωt) и i2 = I2mּsin(ωt + ψ).

Показание прибора в этом случае определяется средним за период значением вращающего мо­мента:

Мвр = ψ.

Здесь С — коэффициент, зависящий от числа витков, геоме­трических размеров и расположе­ния катушек; I1 и I2 — действующие значения токов в обмотках; ψ— угол сдвига фаз между векто­рами токов I1 и I2.

При равенстве моментов (Mвр = Мпр) подвижная обмотка отклоняется на угол α и стрелка ука­зывает на шкале числовое значение измеряемой электрической величины. Для успокоения подвиж­ной части прибора используют воздушные демпферы. Электродинамические приборы применяют для измере­ния мощности, тока и напряжения в цепях переменного тока.

Приборы электродинамической системы обладают высокой точностью (обусловленной отсут­ствием ферромагнитных сер­дечников) и могут быть использованы для измерения электри­ческих ве­личин в цепях постоянного и переменного тока. Недостатками приборов являются чувствительность к перегрузкам и влияние посторонних магнитных полей на точность измерений. Приборы этой сис­темы используются в качестве амперме­тров, вольтметров, и ваттметров.

7.1.4. Индукционная система.

Принцип действия индукционных приборов поясним на упрощенной схеме устройства однофазного счетчика переменного тока (рис. 7.5,а—в).

Основными элементами прибора являются: трехстержневой электромагнит 1 с обмоткой 2, имеющей большое число вит­ков из тонкой проволоки; П-образный электромагнит 3 с об­моткой 4, имеющей небольшое число витков из толстой прово­локи; алюминиевый диск 5, который может вра­щаться вокруг оси 6.

Обмотка 2 включается параллельно измеряемой цепи, а об­мотка 4 — последовательно с этой цепью.

Ток I1 в катушке 4 образует магнитный поток Ф1 который дважды пересекает алюминиевый диск 5. Ток I2 в обмотке 2 создает магнитный поток, часть которого Ф2 также пронизы­вает диск 5 (поток Ф2 замыкается по стальной скобе 7).

Ток I1 и напряжение U сдвинуты по фазе на угол j, значе­ние которого определяется характером нагрузки, присоединен­ной к линии Л. Ток I2 благодаря большой индуктивности обмотки 2 отстает по фазе от напряжения U на угол, близкий к 90°. Магнитные потоки Ф1 и Ф2 совпадают по фазе с вызвав­шими их токами I1 и I2 (рис.7.5, г). Поток Ф1 пропорционален току нагрузки I1, а поток Ф2 — напряжению сети.

Переменные потоки Ф1, и Ф2 индуктируют в алюминиевом диске ЭДС E1 и Е2, отстающие по фазе от этих потоков на 90°. ЭДС E1 и E2 вызывают в диске токи IД1, и IД2 которые можно считать совпадающими по фазе с вызвавшими их ЭДС. При­мерная картина распределения токов в диске показана на рис.7.5,б.

Мгновенное значение силы Fэм действующей на элемент ди­ска с током iд, равно

Fэм = kФiд = kФmsin(ωt)ּIдmsin(ωt +ψ),

где k коэффициент пропорциональности; ψ — угол сдвига фаз между потоком Ф и током Iд.

Среднее за период значение силы Fэм

Fср= эм dt = ωtּsin(ωt+ ψ)dt = k2ФIдcos ψ. (7.1)

Из векторной диаграммы видно, что углы между потоком Ф1 и током Iд1 и между потоком Ф2 и током Iд2 равны 90°, угол между потоком Ф1 и током Iд2 составляет (180° — j), а угол -ме­жду потоком Ф2 и током Iд1 равен j.

Учитывая это и исходя из (7.1), находим, что силы взаимо­действия магнитных потоков Ф1 и Ф2 с токами Iд1 и Iд2 создают результирующий момент, вращающий диск:

Мвр = С1Ф1Iд2 cos(180˚− j) + С2Ф2Iд1 cos j =

= C 'Ф1Ф2 cos(180˚− j) + С 'Ф1Ф2 cos j = CUI1cos j = CP, (7.2)

где C', С1, С2 коэффициенты пропорциональности; Р — ак­тивная моность,птребляемая на­грузкой.

Из (7.2) следует, что вращающий момент, действующий на диск счетчика, пропорционален мощности Р.

Для создания противодействующего момента предусмотрен постоянный магнит 8 (рис.7.5а и б). При вращении диска поле постоянного магнита, индуктирует в нем вихревые токи, ко­торые в со­ответствии с законом Ленца противодействуют вра­щению диска. Поскольку значение вихревых то­ков пропорцио­нально частоте вращения диска п, противодействующий мо­мент также пропорциона­лен n:

Мпр = Соn.

Так как вращающий момент Мвр при установившейся час­тоте вращения диска уравновешива­ется противодействующим моментом Мпр, из формул (7.1) и (7.2) следует, что частота вра­щения диска пропорциональна мощности Р:

.

Число оборотов N, которое диск сделает за время t, будет пропорционально энергии W, полу­ченной из сети нагрузкой за это же время:

N = .

Величина W/N=C0/C называется постоянной счетчика и представляет собой электрическую энергию, соответствующую одному обороту диска.

Счетчик снабжается счетным механизмом, связанным червячной передачей с осью диска. Измеряемая счетчиком энергия отсчитывается по показаниям счетного механизма.

7.2.Погрешности измерений. Номинальные величины и постоянные приборов. Условные обозначения электроизмерительных приборов.

7.2.1. Погрешности измерений и электроизмерительных прибо­ров.

Показания электроизмерительных приборов несколько от­личаются от действительных значений измеряемых величин. Это вызвано непостоянством параметров измерительной цепи (изменение тем­пературы, индуктивности и т. п.), несовершен­ством конструкции измерительного механизма (нали­чие трения и т. д.) и влиянием внешних факторов (внешние магнитные и электрические поля, изме­нение температуры окружающей среды и т. д.).

Разность между измеренным Аи и действительным Ад зна­чениями контролируемой величины называется абсолютной погрешностью измерения:

ΔА = Аи Ад.

Если не учитывать значения измеряемой величины, то абсо­лютная погрешность не дает пред­ставления о степени точности измерения. Действительно, предположим, что абсолютная пог­реш­ность при измерении напряжения составляет DU = 1 В. Ес­ли указанная погрешность получена при измерении напряжения в 100 В, то измерение произведено с достаточной степенью точности. Если же погрешность DU = 1 В получена при измере­нии напряжения в 2 В, то степень точности недоста­точна. По­этому погрешность измерения принято оценивать не абсолют­ной, а относительной погреш­ностью.

Относительная погрешность измерения представляет собой отношение абсолютной погрешно­сти к действительному значе­нию измеряемой величины, выраженное в процентах:

. (7.3)

Поскольку действительное значение измеряемой величины при измерении не известно, для оп­ределения ΔU и γ можно воспользоваться классом точности прибора, представляющим собой обоб­щенную характеристику средств измерений, опреде­ляемую предельными допустимыми погрешно­стями.

Амперметры, вольтметры и ваттметры подразделяются на восемь классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положи­тельную или отрицательную основную приведенную погрешность, которую имеет данный прибор.

Под основной приведенной погрешностью прибора пони­мают абсолютную погрешность, вы­раженную в процентах по отношению к номинальной величине прибора:

(7.4)

Например, прибор класса точности 0,5 имеет γnp= ±0,5%. Погрешность γпр называется основной, так как она гаранти­рована в нормальных условиях, под которыми понимают тем­пературу окружаю­щей среды 20 °С, отсутствие внешних маг­нитных полей, соответствующее положение прибора и т. д. При других условиях возникают дополнительные погрешности. По­грешность γпр называется приве­денной, потому что абсолютная погрешность независимо от значения измеряемой величины выража­ется в процентах по отношению к постоянной величине Аном.

Сравнивая (7.3) и (7.4), нетрудно получить

. (7.5)

Из (7.5) следует, что относительная погрешность измерения зависит от действительного значе­ния измеряемой величины и возрастает при ее уменьшении. Вследствие этого надо ста­раться по воз­можности не пользоваться при измерении началь­ной частью шкалы прибора. В случае необходимо­сти измере­ния малых величин следует применять другие приборы.

Пример 7.1. Номинальное напряжение вольтметра Uном= 150 В, класс точности 1,5. С помощью вольтметра измерено напря­жение U = 50 В.

Определить абсолютную и относительную величину погрешности измерения, а также действи­тельное значение напряжения.

Решение. Абсолютная погрешность измерения

.

Действительное значение напряжения может лежать в пределах

Uд = Uи ΔU = (50 ± 2,25) В.

Относительная погрешность измерения

7.2.2. Номинальные величины приборов.

Наибольшие значения напряжений, токов и мощностей, которые могут быть измерены перечисленными приборами называются номинальными напряжениями Uном, токами Iном и мощностями Pном соответственно вольтметров, амперметров и ваттметров.

Номинальная мощность ваттметра в отличие от его номи­нальных напряжения и тока указыва­ется не всегда. Для ваттме­тра номинальное напряжение представляет собой наибольшее напряжение, на которое может быть включена обмотка напря­жения; номинальным током явля­ется наибольший ток, на ко­торый рассчитана последовательная обмотка.

Если номинальная мощность ваттметра не дана, то ее мож­но подсчитать по номинальному на­пряжению и току:

Pном= UномIном .

7.2.3. Постоянные приборов.

Постоянная (цена деления) прибора представляет собой значение измеряемой величины, вызы­вающее от­клонение подвижной части прибора на одно деление шкалы. Постоянные вольтметра, ам­перметра и ваттметра могут быть определены следующим образом:

CU = Uном / N, вольт на одно деление;

CI = Iном / N, ампер на одно деление;

CP = Uном Iном / N, ватт на одно деление;

где N — число делений шкалы соответственно вольтметра, амперметра и ваттметра.

Пример 7.2. Ваттметр имеет номинальное напряжение Uном= 150 В, номинальный ток: Iном = 5 А, число делений шкалы N = 150.

Определить номинальную мощность и постоянную ваттметра, а также его показание, если при измерении мощности подвижная часть отклонилась на N = 60 делений.

Решение. Номинальная мощность ваттметра Pном = Uном Iном = 150 · 5 = 750 Вт .

Постоянная ваттметра CP = Pном / N = 750/150 = 5 Вт/дел.

Показание ваттметра при отклонении его подвижной части на N = 60 делений

P = CP N = 5 · 60 = 300 Вт.

7.2.4. Чувствительность приборов.

Под чувствительностью приборов понимают число делений шкалы, приходящееся на единицу измеряемой величины. Чувствительность вольтметра, амперметра и ваттметра может быть опреде­лена следующим образом:

SU = N /Uном , делений на вольт;

SI = N /Iном , делений на ампер;

, делений на ватт.

Очевидно, что S = 1/С.

7.2.5. Условные обозначения электроизмерительных приборов.

На лицевой стороне электроизмерительных приборов изобра­жен ряд условных обозначений, позволяющих правильно вы­брать прибор и дающих некоторые указания по их эксплуата­ции.

Согласно ГОСТ на лицевой стороне прибора должны быть изображены:

а) условное обозначение единицы измерения или измеряе­мой величины либо начальные буквы наименования прибора (табл. 7.1);

б) условное обозначение системы прибора (табл. 7.2);

в) условные обозначения рода тока и числа фаз, класса точ­ности прибора, испытательного на­пряжения изоляции, рабоче­го положения прибора, исполнения прибора в зависимости от условий эксплуатации, категории прибора по степени защищен­ности от внешних магнитных полей (табл. 7.3).

Таблица 7.1

Род измеряемой величины

Название прибора

Условное

Обозначение

Ток

Амперметр

. А

Миллиамперметр

. mА

Микроамперметр

. μА

Напряжение

Вольтметр

. V

Милливольтметр

. mV

Электрическая мощность

Ваттметр

. W

Киловаттметр

. kW

Электрическая энергия

Счетчик киловатт-часов

. kWh

Сдвиг фаз

Фазометр

. φ

Частота

Частотомер

. Hz

Электрическое сопротивление

 

 

Омметр

. Ω

Мегаомметр

. МΩ

Таблица 7.2

Система прибора

Условное обозначение

Магнитоэлектрическая:

с подвижной рамкой и механической противодействующей силой

с подвижными рамками без механической противодействующей силы (логометр)

 

 

Электромагнитная: с механической противодействующей силой

без механической противодействующей силы (логометр)

Электродинамическая (без экрана): с механической противодействующей силой

без механической противодействующей силы (логометр)

 

 

Таблица 7.3

Условное обозначение

Расшифровка условного обозначения

Прибор постоянного тока

Прибор постоянного и переменного тока

Прибор переменного тока

Прибор трехфазного тока

1,5

Прибор класса точности 1,5

Измерительная цепь изолирована от корпуса и испы­тана напряжением 2 кВ

Осторожно! Прочность изоляции измерительной цепи не соответствует нормам

Рабочее положение шкалы наклонное, под углом 60 °

Рабочее положение шкалы горизонтальное

Рабочее положение шкалы вертикальное

 

Исполнение прибора в зависимости от условий эксплуатации (свойств окружающей среды)

Категория прибора по степени защищенности от внешних магнитных полей

7.4. Измерение электрических величин.

7.4.1 Методы измерений.

На практике применяют различные методы измерения электрических величин. Условно их можно разделить на прямые, косвенные и совокупные. Кроме того, они делятся на методы непосред­ственной оценки и на методы сравнения.

Наибольшее распространение получил метод непосредственной оценки. При этом числовое значение измеряемой величины определяется непосредственно по показаниям прибора, например величину тока по показаниям амперметра, напряжения – по показаниям вольтметра, сопротивления – по показаниям омметра и т.д. Это прямые измерения. Если измеряемая величина определяется по данным измерения других электрических величин путем вычисления этой величины, то такое изме­рение называется косвенным. Например, определение сопротивления по показаниям амперметра и вольтметра.

Метод сравнения широко используется для точных измерений. Он заключается в сравнении из­меряемой величины с образцовой мерой такой же физической природы. Метод сравнения осуществ­ляется с помощью мостовых или компенсационных схем.

7.4.2 Измерение тока и напряжения.

Для измерения величины тока в какой-либо цепи последовательно в цепь включают амперметр. Для измерения значения напряжения на каком-либо участке электрической цепи на элементе цепи подсоединяется параллельно им вольтметр.



В установках постоянного тока

Рис 7.6 а) применяются, как правило приборы магнитоэлектрической системы, в установках переменного тока используют преимущественно приборы электромагнитной системы.

Между амперметром и вольтметром нет принципиальной разницы. Показания обоих приборов пропорциональны току, протекающему по рамке. Однако соответственно их назначению к ним


предъявляют совершенно противоположные требования:

амперметр должен иметь возможно мень­шее сопротивление, а вольтметр возможно большее сопротивление. Для уменьшения погрешности измерения необходимо чтобы сопротивление амперметра было на два порядка меньше, а сопротив­ления вольтметра на два порядка больше сопротивления любого элемента измерения цепи.

Для расширения предела измерения

Рис 7.6 б) амперметра ( в k раз) в цепях постоянного тока служат шунты-резисторы, вклю­чаемые параллельно амперметру (рис. 7.6,a).

Сопротивление шунта определяется из соотношения

rш (Imax Iа,н) = rаIа,н ,

где Imax — наибольшее значение тока в контролируемой цепи (предел измерения тока ампер­метром при наличии шунта);

Iа,н — предельное (номинальное) значение тока прибора при от­сутствии шунта.

Отсюда .

Значение тока I в контролируемой цепи при существующей нагрузке определяется из соотно­шения

,

где Iа — показание амперметра.

Шкалу амперметра часто градуируют с учетом включенного шунта; тогда значение измеряе­мого тока I отсчитывается не­посредственно по шкале прибора.

В цепях переменного тока для расширения пределов изме­рения амперметров используют трансформаторы тока.

Для расширения предела измерения вольтметра (в k раз) в цепях напряжением до 500 В обычно применяют добавочные резисторы, включаемые последовательно с обмоткой вольтметра (рис. 7.6, б).

Сопротивление добавочного резистора rд определяют из соотношения

,

где Umax - наибольшее значение измеряемого напряжения (пре­дел измерения напряжения вольтметром при наличии добавоч­ного резистора); Uв,н — предельное (номинальное) значение на­пряжения прибора при отсутствии добавочного резистора. Отсюда

.

Значение фактически измеряемого напряжения U опреде­ляется из соотношения

, U = kUв,

где Uв — показание вольтметра.

Шкалу вольтметра градуируют с учетом включенного доба­вочного резистора.

В цепях переменного тока высокого напряжения для расши­рения пределов измерения вольт­метров применяют трансфор­маторы напряжения.

7.5. Измерение мощности и энергии в цепях переменного тока

7.5.1. Измерение активной мощности в цепях однофазного то­ка.

Для измерения мощности Р служат ваттметры электродинамической системы; схема включе­ния ваттметра изображена на рис. 7.7.

Неподвижная обмотка 1—1 при­бора называется токовой и включа­ется в цепь последовательно. Подвиж­ная обмотка 2—2 называется обмот­кой напряжения и включается в цепь параллельно.

Ток I2 в обмотке напряжения 2—2


пропорционален напряжению U кон­тролируемой цепи и сов­падает с ним по фазе, а ток I1 равен току I нагрузки.

Рис 7.7 Момент, действую­щий на подвижную обмотку, равен

Mвр = CUI cos φ = CP,

где С — коэффициент пропорциональности.

Поскольку противодействующий момент Мпр пропорциона­лен углу поворота а стрелки, откло­нение стрелки пропорцио­нально измеряемой активной мощности Р.

Для правильного включения ваттметра один из выводов то­ковой обмотки и один из выводов обмотки напряжения отме­чают звездочками (*). Эти выводы, называемые генераторными, необхо­димо включать со стороны источника питания.

Следует отметить, что электродинамическими ваттметрами можно измерять также мощность в цепях постоянного тока.

7.5.2. Измерение активной и реактивной мощностей в цепях трехфазного тока.

Для изме­рения мощности трехфазного при­емника применяют различные схемы включения ваттметров.

При симметричной нагрузке активную мощность Р можно измерить одним ваттметром, вклю­ченным по схемам рис. 7.8,а,б.

а) б) в)

Рис.7.8.

Общая мощность потребителя

P = 3W,

где W показание ваттметра.

При несимметричной нагрузке мощность трехфазного приемника можно измерить тремя ватт­метрами (рис. 7.8,в).

Общая мощность приемника в этом случае

P = W1 + W2 + W3 .

В трехпроводных системах трехфазного тока при симмет­ричной и несимметричной нагрузках и любом способе соедине­ния приемников широко распространена схема измерения мо­щности двумя ваттметрами (рис. 7.9 ).

На этой схеме токовые обмотки ваттметров включены в линейные провода А и В, а обмотки напряжения — на линейные напряжения UАС и UВС

При симметричной нагрузке реактивную мощность Q трехфазной системы можно измерить од­ним ваттметром (рис. 7.10 ).

В этой схеме токовая обмотка включена в линейный провод А, а парал­лельная обмотка напряжения — на линейное напряжение UВС.

Умножая показание ваттметра на , получаем значение реактивной мощности Q трехфазной сети при симметричной нагрузке.

7.5.3. Измерение электрической энергии в цепях переменного тока.

Для измерения энергии в цепях переменного тока при­меняются однофазные и трехфазные счетчики индукционной системы. Схемы включения однофазных счетчиков для измерения активной энергии Wа в однофазной в трехфазной цепях аналогичны схемам включения ваттметров, представ­ленных на рис. 7.7, 7.8.

В трехфазных цепях активную энергию Wа, измеряют трех- или четырехэлементными трехфаз­ными счетчиками. Трехэле­ментные счетчики конструктивно представляют собой три из­мерительные системы однофазных счетчиков, имеющих общую ось. Трехэлементные счетчики (рис. 7.11, а) ис­пользуют в четы­рехпроводных цепях трехфазного тока.

Для измерения активной энергии в трехпроводниковых цепях применяют двухэлементные счетчики (рис. 7.11 б), объе­диняющие измерительные

системы двух однофазных счетчиков.

 

Обмотки этих систем включают по рассмотренной ранее схеме двух ваттметров (см. рис. 7.9).

Реактивную энергию Wр при симметричной нагрузке фаз трехпроводной сети можно измерить при помощи двух одно­фазных счетчиков, обмотки которых включены по схеме рис. 7.9, Значение Wp находят как разность показаний счетчиков, увеличенную в раз. Кроме того, применяют специаль­ные трехфазные счетчики реактивной энергии, используемые как при симметричной, так и при несимметричной нагрузках фаз.

7.6. Электронно—лучевой осциллограф

Электронно-лучевой осциллограф используется для визуаль­ного наблюдения, измерения и ре­гистрации формы и парамет­ров электрических сигналов в диапазоне частот от постоянного тока до десятков мегагерц.

Электронно-лучевые осциллографы обладают высокой чув­ствительностью и малой инерцион­ностью, подразделяются на универсальные, запоминающие; специальные и др., могут быть одно-, двух- и многолучевыми.

Функциональная схема электронно-лучевого осциллографа приведена на рис.7.12.


Основным узлом осциллографа являет­ся вакуумная электронно-лучевая трубка ЭЛТ, которая пре­образует элек­трические сигналы в световое изображение. Катод 2, подогреваемый нитью накала 1, является источ­ником сво­бодных электронов, которые формируются в электронный луч и фокусируются первым анодом 4 на экране 8 ЭЛТ. Ускорение электронов луча осуществляется вторым анодом 5. При соуда­рении электронов с экраном 8 их кинетическая энергия преоб­разуется в световое излучение посред­ством катодолюминофоров, т. е. веществ, светящихся под действием бомбардировки их электронами. Время после­свечения (после прекращения действия электронного луча) может составлять от 0,05 до 20 с и более.

Изменяя отрицательный потенциал электрода 3 по отноше­нию к катоду, можно воздействовать на значение тока элек­тронного луча, а следовательно, и яркость свечения изображе­ния на экране.

Управление лучом ЭЛТ осуществляется посредством трех каналов управления х, у,z, кото­рые обеспечивают получение развернутого изображения исследуемого электрического сигна­ла в функции времени. Канал у осуществляет вертикальное от­клонение луча по оси у системы координат и непосредственно связан с исследуемым сигналом. Канал х обеспечивает гори­зонтальное отклоне­ние

луча по оси времени х системы коорди­нат. Канал z управляет яркостью луча.

Для создания линейного масштаба по оси времени х необ­ходимо равномерное перемещение электронного луча по гори­зонтали, что обеспечивается подачей на горизонтально откло­няющие пластины 7 ЭЛТ линейно нарастающего напряжения развертки (рис. 7.13, в). Если при этом отсут­ствует напряжение на вертикально отклоняющих пластинах б, на экране осцил­лографа появляется горизонтальная линия. При одновремен­ной подаче исследуемого напряжения (рис. 7.1З,а) на пла­стины б и напряжения развертки на экране осциллографа появляется осциллограмма (рис.7.13,б), дающая полное представление о форме, амплитуде, частоте исследуемого напряжения.

В канале х частота генератора развертки недостаточно ста­бильна. Для получения устойчивого изображения на экране ос­циллографа необходимо выполнение равенства Tx=nTу, где Tx — период напряжения развертки, Ty — период исследуемого напряжения, п = 1, 2, З... Это равенство обеспечи­вается устрой­ством синхронизации, которое «подстраивает» частоту генера­тора развертки под час­тоту исследуемого напряжения.

Если «подстройка» производится исследуемым сигналом, то она называется «внутренней син­хронизацией», если от какого-либо другого сигнала — «внешней синхронизацией».

Усилитель в канале х обеспечивает линейно нарастающее напряжение заданного значения (до нескольких сотен вольт).

Канал у выполняет по существу функции усилителя. Чтобы он не влиял на режим работы ис­следуемой электрической цепи, используют катодный повторитель, имеющий значительное входное сопротивление. Так как исследуемые напряжения изменяются в широком диапазоне, для обеспечения опти­мального напряжения на выходе данного канала на его входе предусмотрен аттенюатор (дели­тель напряжения). Для исследования фронтов импульсов напряжений введено устрой­ство — линия задержки.

С целью определения масштаба осциллограмм по осям абс­цисс и ординат в осциллографе пре­дусмотрены калибраторы длительности и амплитуды.

Значительный интерес представляют запоминающие осцил­лографы, предназначенные для реги­страции однократных и редко повторяющихся сигналов. Их скорости записи — до 4000 км/с, при уровнях сигналов десятки милливольт — сотни вольт. Так, универсальный осциллограф С8-12 имеет время вос­произведения ранее записанных процессов 40 с, время сохране­ния записи 7ч.

7.7. Понятие об аналоговых и цифровых приборах

7.7.1. Аналоговые электронные вольтметры.

В радиоэлектронных цепях к вольтметрам, как и другим измерительным приборам, предъ­явля­ются повышенные требования, такие как ничтожно малое потреб­ление мощности, частотный диапа­зон измеряемого напряжения от еди­ниц герц до сотен мегагерц, и в то же время слабая зависимость показаний от частоты измеряемого напряжения, высокая чувствитель­ность и т. д. Этим требованиям не соответствуют стрелочные вольт­метры, которые осуществляют непосредственную оценку (пря­мой от­счет) измеряемого напряжения. Вышеперечисленным требованиям удовлетворяют аналоговые электронные вольтметры, использующие усилители измеряемых напряжений.

С учетом назначения электронные вольтметры подразделяются на вольтметры: постоянного и переменного тока, импульсного напряже­ния, универсальные и др. Функциональная схема универ­сального ана­логового электронного вольтметра представлена на рис. 7.14, данный вольтметр явля­ется универсальным, т. е. предназначен для измерений в цепях как постоянного, так и переменного тока.

П