Копылов И.П., Клоков Б.К., Морозкин В.П., Токарев Б.Ф. Проектирование электрических машин (ГЛАВА 5 Параметры ЭМ)

Посмотреть архив целиком

ГЛАВА ПЯТАЯ. Параметры электрических машин


Параметрами электрических машин называют активные и ин­дуктивные сопротивления ее обмоток. К параметрам относят также момент инерции ротора, значение которого входит в уравнение дви­жения электрической машины.


5.1. АКТИВНЫЕ СОПРОТИВЛЕНИЯ ОБМОТОК


Общим выражением для расчета активного сопротивления фазы обмотки электрических машин является формула


(5.1)


где kr — коэффициент вытеснения тока; pv — удельное сопротивление материала проводника, Омм, при расчетной температуре v,°С; L — длина проводника фазы обмотки, м; qэф — площадь поперечного се­чения эффективного проводника, м2; а — число параллельных ветвей обмотки.

Удельные сопротивления некоторых наиболее часто применяе­мых в электрических машинах проводниковых материалов для различных расчетных температур приведены в табл. 5.1.


Таблица 5.1. Удельные электрические сопротивления

материала проводников обмоток


Тип обмотки

Материал

Удельное электрическое сопротивление, Ом-м, при температуре, ° С

20

75

115

Обмотка из медных обмоточных проводов или неизолированной медной проволоки или шины

Медь




Короткозамкнутые обмотки роторов асинхронных двигателей


Алюминиевые шины






Алюминий литой





Примечание. Удельное сопротивление алюминия после заливки в пазы ротора несколько повышается в связи с образованием некоторого количества раковин (воздушных включений) и с изменением структуры при охлаждении в узких пазах или участках паза. Поэтому в расчетах принимают удельные сопротивления литой алю­миниевой обмотки роторов асинхронных двигателей равными 10-6/21,5 Омм при температуре 75° С и 10-6/ 20,5 Омм при температуре 115° С.

Согласно ГОСТ 183-74 для обмоток, предельно допустимые пре­вышения температур которых соответствуют классам нагревостойкости А, Е и В, расчетная температура принимается равной 75° С, а для обмоток, предельно допустимые превышения температуры которых соответствуют классам нагревостойкости F и Н, 115° С.

Длина проводника фазы распределенной обмотки


L = lcpw, (5.2)


где lср — средняя длина одного витка:


lср = 2(lп + lл). (5.3)


Длину пазовой части витка lп принимают равной длине сердеч­ника. Длина лобовой части lл зависит от типа и конструкции обмот­ки, ее шага и внутреннего диаметра статора (наружного диаметра ротора или якоря).

В машинах постоянного тока общая длина обмотки якоря


L = lcpw = lcp N/2, (5.4)


где N — число эффективных проводников в обмотке.

Число параллельных ветвей обмотки якоря в отличие от машин переменного тока обозначают 2а, поэтому активное сопротивление одной параллельной ветви обмотки якоря


rветви = (5.5)

а сопротивление всей обмотки


r = (5.6)


Коэффициент вытеснения тока kr, зависит от характера распреде­ления тока по сечению проводников и представляет собой отноше­ние активного сопротивления проводника при неравномерном рас­пределении плотности тока по сечению к сопротивлению того же проводника при одинаковой плотности тока во всех точках его се­чения.

Проводники, расположенные в пазах электрических машин, находятся в зоне полей пазового рассеяния. Если в обмотке про­текает переменный ток, то в проводниках возникают вихревые токи, которые, накладываясь на основной ток проводника, увели­чивают или уменьшают плотность тока на различных участках их сечения.

Равномерность распределения плотности тока нарушается, и ак­тивное сопротивление проводника увеличивается.

При постоянном токе в обмотке вихревые токи не возникают и kr = 1. Поэтому сопротивление проводников при постоянной по всему сечению плотности тока называют сопротивлением постоянному току.

Если проводник или какой-либо участок проводника располо­жен в воздухе и не находится в зоне сильного электромагнитного поля машины, то плотность тока во всех точках его сечения при рас­чете принимают одинаковой. Так поступают, например, в большинстве случаев при расчете сопротивлений лобовых частей обмоток, для которых принимают kr = 1. Некоторое увеличение активного со­противления, связанное с неравномерностью распределения плотности тока из-за проявления поверхностного эффекта, влияния полей лобового рассеяния, изгибов проводников и т. п., учитывают приближенно, относя его к добавочным потерям.

Расчет распределения плотности тока по сечению проводников, находящихся в пазах магнитопровода, показал, что наибольшая плотность тока будет в верхних участках поперечных сечений проводников, т. е. в участках, расположенных ближе к раскрытию паза и воздушный зазор (рис. 5.1). Ток как бы вытесняется в верхнюю часть сечения проводника, поэтому такое явление называют эффек­том вытеснения тока, а коэффициент kr, введением которого учитывают изменение активного сопротивления под действием этого эф­фекта, — коэффициентом вытеснения тока.

Эффект вытеснения тока приводит к увеличению расчетного ак­тивного сопротивления проводника (всегда kr ≥ 1). Значение коэф­фициента kr зависит от частоты тока в обмотке, удельного сопро­тивления проводникового материала, размеров, числа и расположения проводников в пазу и от размеров паза.

Методы определения kr приводятся в главах учебника, относя­щихся к расчету сопротивлений обмоток машин конкретных ти­пов.




Рис. 5.1. Распределение плотности тока в проводниках

обмотки под действием эффекта вытеснения тока:

а — при одном массивном проводнике в пазу;

б — при нескольких проводниках в пазу


Площадь поперечного сечения эффективного проводника определяется размерами обмоточного провода и числом элементарных проводников в одном эффективном. Для распределенных обмоток электрических машин не применяют прямоугольные провода пло­щадью поперечного сечения более 17. ..20 мм2, так как при большем их сечении резко возрастают потери на вихревые токи, наводимые полем машины.

Распределенные обмотки из круглого провода наматывают обмоточными проводами площадью поперечного сечения, не превы­шающей 2,5 мм2, так как при большем сечении не удается достичь удовлетворительного заполнения паза из-за возрастающей с диамет­ром упругости провода. В связи с этим обмотки с расчетной площа­дью поперечного сечения эффективного проводника, превышающей указанную цифру, наматывают не одним обмоточным проводом, а несколькими параллельными проводами одновременно. Такие проводники в отличие от параллельных, ветвей в схеме обмотки (см. гл. 3) называют элементарными. Несколько элементарных про­водников образуют один эффективный, площадь поперечного сечения которого


qэф = nэл qэл (5.7)


где nэл — число элементарных проводников в одном эффективном; qэл — площадь поперечного сечения элементарного проводника, при этом принимают допущение, что плотность тока во всех элементар­ных проводниках, составляющих один эффективный, одинакова и размеры катушек не зависят от nэл.


5.2. ИНДУКТИВНЫЕ СОПРОТИВЛЕНИЯ ОБМОТОК


Индуктивное сопротивление обмоток электрических машин определяется их взаимной индуктивностью и собственной индуктивностью. Индуктивное сопротивление взаимной индукции является характеристикой главного поля машины, поток которого сцеплен с витками как первичной, так и вторичной обмоток. Методы расчета индуктивных сопротивлений взаимной индукции различны для раз­ных типов машин.

Индуктивные сопротивления самоиндукции, или, как их называ­ют, индуктивные сопротивления рассеяния обмоток, характеризуют поля рассеяния, потоки которых сцеплены с витками каждой из об­моток в отдельности. Методы их расчета более сложные, но для ма­шин различных типов имеют много общего. Поля рассеяния стато­ра и ротора рассматривают раздельно. Потоки рассеяния каждой из обмоток, кроме того, подразделяют на три составляющие: пазового, лобового и дифференциального рассеяния. Соответственно подраз­делению потоков вводят понятия сопротивлений пазового, лобового и дифференциального рассеяний, сумма которых определяет ин­дуктивное сопротивление рассеяния фазы обмотки статора или ротора. Для расчета сопротивлений рассеяния помимо размеров магнитопровода и обмоточных данных машины необходимо знать удельные коэффициенты магнитной проводимости пазового λп, ло­тового λл и дифференциального λд рассеяний.

Под удельной магнитной проводимостью понимают магнитную проводимость, отнесенную к длине части обмотки, расположенной в пазу или вне паза.

При расчете индуктивного сопротивления, взаимной индук­ции и пазового рассеяния под удельной магнитной проводимостью понимают магнитную проводимость, отнесенную к единице расчетной длины магнитопровода с учетом ослабления поля над радиальными вентиляционными каналами. При этом расчетная цлина:

l'δ = lδ – 0,5 nк bк (5.8)


где nпк и bк — число и ширина радиальных вентиляционных каналов в сердечнике машины.

Так как расчет коэффициентов магнитной проводимости прово­дят всегда на единицу длины, то слово «удельной» в тексте обычно опускают.



Коэффициент магнитной проводимости пазового рассеяния.

Предположим, что в пазу с высотой hп расположено Nп проводни­ков однослойной обмотки (рис. 5.2). Примем следующие допуще­ния: проводники с током распределены равномерно по всей площа­ди поперечного сечения паза, плотность тока в каждой точке сечения паза постоянна, магнитная проницаемость стали магнито­провода равна бесконечности, магнитные линии потока рассеяния в пазу прямолинейны и направлены нормально к оси паза. Все рас­смотрение будем проводить относительно единицы условной длины l'δ. Для того чтобы учесть потокосцепление потока рассеяния с проводниками об­мотки, выделим в пазу на высоте hx от дна паза элемент высотой dx, представляющий собой трубку потока рассея­ния паза. Поток этого элемента на единицу длины обозначим dФσх. Создаваемое им потокосцепление с проводниками обмотки Nx, расположен­ными в пазу ниже выделенного элемента, равно:






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.