Лекция N25

Задачи о положениях манипуляторов.


П
ри решении задач проектирования и управления промышлен­ными роботами приходится определять как положения его звеньев относительно неподвижной системы координат (абсолютные поло­жения звеньев), так и их относительные положения (например, обобщенные координаты). Соответственно эти задачи известны в робототехнике как прямая и обратная задачи о положениях.

Д

Рис 25.1

ля исследования движения исполнительного механизма мани­пулятора в пространстве наибольшее распространение получил ме­тод преобразования координат с матричной формой записи. Он позволяет упорядочить выполняемые действия и сократить матема­тические выкладки. При этом ме'годе выбирают число систем коор­динат, равное числу элементов звеньев, образующих кинематические пары. Неподвижная система координат обычно связывается со стойкой, а с каждой кинематической парой связыва­ется подвижная система координат, одна из осей которой связана с характерными признаками звена, например осевой линией. Для п

Рис 25.1

римера на рис.24.2, а показаны координатные оси , (или ) четырехзвенной открытой кинематичес­кой цепи из звеньев 1, 2, 3, 4, моделирующей структуру руки человека (см. рис. 24.2, б). Ось направляют вдоль оси кинематической пары, а ось дополняет правую систему координат

Применение метода преобразования координат для решения прямой задачи о положениях проиллюстрируем на примере кинема­тической схемы промышленного робота (рис. 25.1). Четыре подви­жных звена 1, 2, 3 и 4 образуют четыре одноподвижные пары, из которых три вращательные и одна поступательная. Число степеней подвижности робота равно четырем:

Поэтому для решения прямой задачи о положениях должны быть заданы четыре обобщенные координаты: относительные углы поворота звеньев и относительное перемещение вдоль оси звена 3 (рис. 25.1).

Требуется определить радиус-вектор точки Е схвата относительно неподвижной системы координат , связанной со стойкой 5 (или 0). Оси систем координат ориентированы относите­льно элементов кинематических пар следующим образом:

ось неподвижной системы координат стоики направлена вдоль оси вращательной пары А;

со звеном 1 связана система , имеющая смещение начала координат вдоль оси . Ось совпадает с осью , а ось направлена по оси вращательной кинематической пары В;

со звеном 2 связана система , имеющая начало координат совпадающее с точкой . Ось совпадает с осью т. е. с осью вращательной кинематической пары В;

начало координат системы имеет смещение относительно точки вдоль оси . Ось выбрана совпадающей с осью ;

координата точки Е схвата 4 задана в системе , ось которой направлена по оси вращательной кинематической пары D.

Для определения радиуса-вектора необходимо разрешить матричное уравнение перехода к системе координат :

(25.1)

Достоинство метода проявляется в случае специального выбора подвижных систем координат. Если координатные оси совмещать с осью вращательной пары или направлением поступательной па­ры, то матрицы перехода существенно упрощаются.

Координаты точки Е в трехмерном пространстве записываются в виде столбцевых матриц:

Здесь - матрица перехода от системы