Лекция 18

Проектирование многопоточных планетарных механизмов


Постановка задачи синтеза.

При проектировании многопоточных планетарных механизмов необходимо, кроме требований технического задания, выполнять ряд условий связанных с особенностями планетарных и многопоточных механизмов. Задача проектирования и в этом случае может быть разделена на структурный и кинематический синтез механизма. При структурном синтезе определяется структурная схема механизма, при кинематическом – определяются числа зубьев колес, так как радиусы зубчатых прямо пропорциональны числам зубьев 

Для типовых механизмов первая задача сводится к выбору схемы из набора типовых схем. При этом руководствуются рекомендуемым для схемы диапазоном передаточных отношений и примерными оценками ее КПД. Для рассматриваемых схем эти данные приведены в таблице 17.1. После выбора схемы механизма необходимо определить сочетание чисел зубьев его колес, которые обеспечат выполнение условий технического задания - для редуктора это передаточное отношение и величина момента сопротивления на выходном валу. Передаточное отношение задает условия выбора относительных размеров зубчатых колес - чисел зубьев колес, крутящий момент задает условия выбора абсолютных размеров - модулей зубчатых зацеплений. Так как для определения модуля необходимо выбрать материал зубчатой пары и вид его термообработки, то на первых этапах проектирования принимают модуль зубчатых колес равным единице, то есть решают задачу кинематического синтеза механизма в относительных величинах.

При кинематическом синтезе (подборе чисел зубьев колес) задача формулируется так: для выбранной схемы планетарного механизма при заданном числе силовых потоков (или числе сателлитов k) и заданном передаточном отношении u необходимо подобрать числа зубьев колес zi, которые обеспечат выполнение ряда условий.


Условия подбора чисел зубьев. Вывод расчетных формул для условий соосности, соседства и сборки:

Условия, которые необходимо выполнить при подборе чисел зубьев колес типового планетарного механизма:

  • заданное передаточное отношение с требуемой точностью

  • соосность входного и выходного валов механизма

  • свободное размещение (соседство) нескольких сателлитов

  • сборку механизма при выбранных числах зубьев колес

  • отсутствие подрезания зубьев с внешним зацеплением

  • отсутствие заклинивания зубьев во внутреннем зацеплении

  • минимальные относительные габариты механизма.

Рассмотрим эти условия подробнее на примере двухрядного планетарного механизма с одним внешним и одним внутренним зацеплением.

Рис. 18.1




1. Обеспечение заданного передаточного отношения с требуемой точностью:

Принимаем требуемую точность ± 5%, тогда для рассматриваемой схемы механизма :

2. Обеспечение соосности входного и выходного валов:

Для этого необходимо чтобы межосевое расстояние в передаче внешнего зацепления (первый ряд) равнялось межосевому расстоянию в передаче внутреннего зацепления (второй ряд), то есть :

awI = awII ; awI= rw1 + rw2 = r1 + r2 ; awII = rw4 - rw3 = r4 - r3.

Обычно в планетарных механизмах применяются зубчатые колеса без смещения, для которых xi = 0 и rwi = ri = zi m / 2.

Тогда :

r1 + r2= r4 - r3 =>   mI ( z1 + z2) = mII (z4 - z3).

Принимаем, что mI = mII = m, и получаем условие соосности для данной схемы механизма

z1 + z2 = z4 - z3


3. Обеспечение условия соседства сателлитов (при числе сателлитов k > 1):

Сателлиты размещаются на окружности радиуса aw. Вершины зубьев сателлитов не будут мешать движению друг друга, если выполняется условие :

max ( da2,3 ) < lB2B3.

Для зубчатых колес без смещения ( ha*= 1, x2,3 = 0, 2y = 0 ) максимальный из диаметров сателлитов равен

max ( da2,3 ) = max [( z2,3 + 2 ha* + 2 x2,3 - 2y) m ] = max[( z2,3 + 2) m ].

Расстояние между осями сателлитов :

lB2B3 = 2  aw sin ( jh / 2 ) = 2 (r1 + r2) sin ( p / k ). = (z1 + z2) m sin ( p / k ).

Подставим полученные выражения в неравенство и получим условие соседства:

max [( z2,3 + 2) m ] < (z1 + z2) m sin (p / k).

sin ( p /k ) > max [( z2,3 + 2)/ (z1 + z2) ]

4. Обеспечить возможность сборки механизма с подобранными числами зубьев колес при заданном числе сателлитов k > 1:

Для вывода формулы условия сборки воспользуемся следующим методом:

Допустим, что все сателлиты устанавливаются на оси водила в одном и том же положении – точке В1. После установки первого сателлита, зубья колес z1 и z4 определенным образом установились относительно зубьев венцов сателлита. Тогда установить второй сателлит в этом же положении будет можно, если после поворота водила на угол h колесо z1 повернется на целое число угловых шагов В. При этом зубья колес z1 и z4 установятся относительно зубьев венцов сателлита так же, как и при установке первого сателлита.

Угол поворота водила:h= 2 / k

Угловой шаг первого колеса: 1 = 2 / z1

Угол на который повернется первое колесо при повороте водила на угол h :

1 = h u1h => 1 = 2 u1h / k

Число угловых шагов 1 в угле 1 => B = 1 / 1, где B - произвольное целое число.

Подставляем все эти выражения в формулу для B и после преобразований получаем :

2 u1h z1 / (k 2 ) = B =>

u1h z1 / k = B.

Поворачивать водило можно на угол jh плюс произвольное число p полных оборотов водила, то есть:

h= 2 / k + 2 р = 2 / k ( 1 + k р).

С учетом этого, формула для условия сборки примет следующий вид:

U1h * z1 / k ( 1 + k * р) = B.

 

5. Обеспечить отсутствие подрезания колес с внешними зубьями зубьев:

Это условие обеспечивается, если для всех колес с внешними зубьями выполняется неравенство zi > zmin.

6. Обеспечить отсутствие заклинивания во внутреннем зацеплении:

Это условие для передачи внутреннего зацепления, состоящей из колес без смещения, можно обеспечить при выполнении следующих неравенств:

z с внеш. зуб. > 20, z с внутр. зуб. > 85,
z
d = z с внутр. зуб - z с внеш. зуб. > 8.

7. Обеспечить минимальные габариты механизма.

Для рассматриваемой схемы условие обеспечения минимального габаритного размера R можно записать так
R = min [ max ( z1 + 2 z2 ), (kK z4) ], где kK - коэффициент, учитывающий особенности конструкции зубчатого колеса с внутренними зубьями.


Подбор чисел зубьев по методу сомножителей.

Рассмотрим один из методов, используемых при подборе чисел зубьев планетарного редуктора, - метод сомножителей. Метод позволяет объединить в расчетные формулы некоторые из условий подбора (условия 1, 2, 5 и 6). Выполнение остальных условий для выбранных чисел зубьев проверяется. Из первого условия выразим внутреннее передаточное отношение механизма. Внутренним называют передаточное отношение механизма при остановленном водиле, то есть механизма с неподвижными осями или рядного механизма.

u14 h = (z2 * z4)/(z1 * z3) = [ u1h / ( 0.95 … 1.05 ) – 1] = (B * D)/(A * C).

Разложим внутреннее передаточное отношение u14h на сомножители - некоторые целые числа A, B, C и D. При этом сомножитель A соответствует числу зубьев z1 , B - z2 , C - z3 и D - z4.Сомножители могут быть произвольными целыми числами, комбинация (BD) / (AC) которых равна u14h.

Для рассматриваемой схемы желательно придерживаться следующих диапазонов изменения отношений между сомножителями:

B / A = z2 / z1 = 1 … 6 -внешнее зацепление,

D / C = z4 / z3 = 1.1 … 8внутреннее зацепление.

Включим в рассмотрение условие соосности:

z1 + z2 = z4 - z3

и выразим его через сомножители:

a ( A + B) = b ( D – C ).

Если принять, что коэффициенты a и b равны:

a = ( D – C ), b = (A + B),

то выражение превращается в тождество.

Из этого тождества можно записать:

z1= ( D – C ) A q

z3= ( A + B ) C q

z2= ( D – C ) B q

z4= ( A + B ) D q

где q - произвольный множитель, выбором которого обеспечиваем выполнение условий 5 и 6.

Зубья колес планетарного механизма, рассчитанные по этим формулам, удовлетворяют условиям 1, 2, 5 и 6. Проверяем эти зубья по условиям 3 (соседства) и 4 (сборки) и если они выполняются, считаем этот вариант одним из возможных решений. Если после перебора рассматриваемых сочетаний сомножителей получим несколько возможных решений, то проводим их сравнение по условию 7. Решением задачи будет сочетание чисел зубьев, обеспечивающее минимальный габаритный размер R.




Примеры подбора чисел зубьев для типовых планетарных механизмов.

1. Двухрядный планетарный редуктор с одним внешним и с одним внутренним зацеплением.

Дано: Схема планетарного механизма, u1h = 13, k = 3.

Определить: zi

Внутреннее передаточное отношение механизма:

u14 h = (z2 z4) / (z1 z3) = [ u1h / ( 0.95 … 1.05 ) – 1] = 12 = (B D)/(A C) = 3 4 / (1 1) = 2 6 / (1 1)= 4 3 / (1 1) = ...

Для первого сочетания сомножителей:

z1= ( D – C ) A q = ( 4 – 1 ) 1 q = 3 q ;                    z1= 18 > 17;
z
2= ( D – C ) B q = ( 4 – 1 ) 3 q = 9 q ;      q = 6;    z2= 54 > 17;
z
3= ( A + B ) C q = ( 3 + 1 ) 1 q = 4 q;                     z3= 24 > 20;
z
4= ( A + B ) D q = ( 3 + 1 ) 4 q = 16 q;                   z4= 96 > 85;

Проверка условия соседства:

sin ( / k ) > max [( z2,3 + 2)/ (z1 + z2) ]

sin ( / 3 ) > (54 + 2)/(18+54)

0.866 > 0.77 - условие выполняется.

Проверка условия сборки:

( u1h z1 / k ) ( 1 + k p) = B;

(13 18/3) ( 1 + 3 р) = В - целое при любом p.

Условие сборки тоже выполняется. То есть, получен первый вариант решения!
Габаритный размер
R = (18 + 2 Ч 54) = 126.

Для второго сочетания сомножителей:

z1= ( D – C ) A q = ( 6 – 1 ) 1 q = 5 q ;                    z1= 45 > 17;
z
2= ( D – C ) B q = ( 6 – 1 ) 2 q = 10 q ;    q = 9;    z2= 90 > 17;
z
3= ( A + B ) C q = ( 2 + 1 ) 1 q = 3 q;                     z3= 27 > 20;
z
4= ( A + B ) D q = ( 2 + 1 ) 6 8 q = 18 q;       z4= 162 > 85;

Проверка условия соседства:

sin ( / k ) > max [( z2,3 + 2)/ (z1 + z2) ]

sin ( / 3 ) > (90 + 2)/(45+90)

0.866 > 0.681 - условие выполняется.

Проверка условия сборки:

( u1h z1 / k ) ( 1 + k р) = B

(12 45 / 3) ( 1 + 3 р) = В - целое при любом р.

Условие сборки тоже выполняется и получен второй вариант решения!
Габаритный размер
R = (45 + 2 90) = 225.

Для третьего сочетания сомножителей:

z1= ( DC ) A q = ( 3 – 1 )  1 q = 2 q ;                    z1= 18 > 17;
z2= ( DC ) q = ( 3 – 1 ) 4 q = 8 q ;     q = 9;     z2= 72 > 17;
z3= ( A + B ) q = ( 1 + 4 ) 1 q = 5 q;                     z3= 45 > 20;
z4= ( A + B ) q = ( 1 + 4 ) 3 q = 15 q;                   z4= 135 > 85;

Проверка условия соседства:

sin ( / k ) > max [( z2,3 + 2)/ (z1 + z2) ]

sin ( / 3 ) > (70 + 2)/(18+72)

0.866 > 0.8 - условие выполняется.

Проверка условия сборки:

( u1h z1 / k ) ( 1 + k р) = B; (13 18/3) ( 1 + 3 р) = В - целое при любом р.

Условие сборки тоже выполняется и получен третий вариант решения.
Габаритный размер
R = (18 + 2 72) = 162.

Из рассмотренных трех вариантов наименьший габаритный размер получен в первом. Этот вариант и будет решением нашей задачи.

2. Однорядный механизм с одним внутренним и одним внешним зацеплением.
Дано:

схема планетарного механизма, u1h = 7; k = 3.

Определить: zi = ?.




Рис.18.2


Для однорядного планетарного механизма задача подбора чисел зубьев решается без применения метода сомножителей. Задаемся для первого колеса числом зубьев больше 17 и кратным u1h или k.

В нашем примере принимаем:

z1 = 18 > 17.

Тогда из формулы передаточного отношения можно определить число зубьев третьего колеса:

u1h = ( 1 + z3 / z1 ) (0.95 … 1.05)

z3 = [u1h / (0.95…1.05) - 1] z1

z3 = [ 7 / (0.95…1.05) - 1] 18 = 108

Число зубьев второго колеса определим из условия соосности:
z1 + z2 = z3 - z2

z2 = ( z3 - z1 ) / 2 = ( 108 - 18 ) / 2 = 45

Проверка условия соседства:

sin ( / k ) > max [( z2 + 2)/ (z1 + z2) ]

sin ( / 3 ) > (45 + 2)/(18+45)

0.866 > 0.73 - условие выполняется.

Проверка условия сборки:

( u1h z1 / k ) ( 1 + k р) = B

(7 18/3) ( 1 + 3 р) = В  целое при любом р.

В данном случае нет необходимости сравнивать варианты по габаритам, так как мы приняли минимально допустимую величину z1, то получим редуктор минимальных размеров.

3. Двухрядный механизм с двумя внешними зацеплениями. (рис. 18.3)

Дано: схема планетарного механизма, uh1 = -24; k =3.

Определить: zi - ?.




В

Рис. 16.3


нутреннее передаточное отношение механизма:
u1h= 1 / uh1
u
14 h = (z2 z4)/(z1 z3) = [ 1 - u1h / ( 0.95 … 1.05 ) ] = 25/24 = (B D)/(A C) = 5


Случайные файлы

Файл
referat.doc
№129-П.doc
20635.rtf
137983.rtf
144824.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.