Динамическое программирование и вариационное исчисление (49681)

Посмотреть архив целиком

Министерство образования РФ

Южно-Уральский государственный университет


Кафедра Автоматики и управления






Реферат

по математическим основам теории систем

на тему

Динамическое программирование и вариационное исчисление





Выполнил:

Группа: ПС-263

Проверил: Разнополов О. А.








Челябинск

2003


1. Динамические задачи оптимизации управления


1.1. Постановка задачи динамического программирования


Среди разнообразных задач кибернетики значительное место занимают задачи, в которых объект управления находится в состоянии непрерывного движения и изменения под воздействием различных внешних и внутренних факторов. Задачи управления такими объектами относятся к классу динамических задач управления.

Объект называется управляемым, если среди действующих на него разнообразных факторов имеются такие, распоряжаясь которыми, можно изменять характер его движения. Такие целенаправленные воздействия называются управлениями и обозначаются u(t).

Характер движения объекта управления определяется системой дифференциальных уравнений, которую удобно сокращенно записывать в векторной форме в виде одного дифференциального уравнения:

x(t)=g(x,u), x(0)=c.

Управление u(t) входит в уравнение, так что это уравнение определяет не просто конкретное движение объекта, а лишь его технические возможности, которые могут быть реализованы путем использования того или иного управления из пространства допустимых управлений U.

Оценить, насколько при том или ином способе управления достигаются поставленные цели, можно, как и раньше, путем введения целевой функции, которую в данном случае удобно записать в виде

J=J[x(t),x(t),u(t),t].

Так, если u(t) - мгновенный расход топлива, а x(t) - мгновенная скорость самолета, то с точки зрения расхода топлива качество управления в любой момент времени может быть охарактеризовано величиной J(t)=u(t)/x(t) (мгновенный расход топлива на едини­цу пути), которая, естественно, будет зависеть от состояния природы, т.е. от совокупности внешних факторов, определяющих условия полета.

Целевая функция в виде, записанном выше, используется редко, так как она дает оценку лишь мгновенных значений управляемого процесса, тогда как в большинстве задач бывает необходимо оценить процессы в объекте управления на протяжении всего времени управления от 0 до Т.

Во многих случаях целевую функцию удается подобрать так, что оценку процесса в объекте управления можно произвести путем интегрирования целевой функции за все время управления, т.е. за критерий качества управления принять функционал J(u)= .

Так, если целевая функция имеет физический смысл потерь, то можно определяет суммарные потери за весь процесс управления.

Иногда в качестве цели управления удается задать желаемый ход процесса z(t). При этом в качестве целевой функции можно взять квадрат или абсолютное значение отклонения процесса x(t) от желаемого:

J=[x(t)-z(t)]2, J=| x(t)-z(t)| .

В этих случаях критерий качества управления будет определять полную квадратичную или абсолютную ошибку.

В динамических задачах управления наряду с ограничениями, определяющими пространство допусхидшх. управлений U, приходится иметь дело с интегральными ограничениями вида

.

Весьма часто, например, приходится сталкиваться с необходимостью ограничения пределов изменения мгновенного значения некоторого параметра а(х,u) в процессе управления. Обозначим через a0 то значение параметра а, превышение которого является нежелательным. Если подынтегральную функцию H(х, u), называемую в данном случае функцией штрафа, определить из соотношения

то интегральное ограничение будет выражать требование, чтобы мгновенное параметра а могло превышать а0 лишь кратковременно и на незначительную величину. Это условие будет выполняться тем жестче, чем меньше К. так, при К=0 ограничение вообще не будет допускать превышениен а над а0.

Такие ограничения возникают также тогда, когда приходится иметь дело с ограниченными ресурсами: может быть ограничено находящееся в распоряже­нии количество энергии, топлива,если речь идет о траекториях, и т.п.

Приведенные соотношения позволяют дать следующее определение оптимального управления в динамических системах. Оптимальным называется управление u*(t), выбираемое из прастранства допустимых управлений U, такое, которое для объекта, описываемого дифференциальным уравнением, минимизирует критерий качества при заданных ограничениях на используемые ресурсы.


1.2. Многошаговые процессы управления


1.2.1. Поведение динамической системы как функция начального состояния

Нахождение оптимального управления в динамических системах во многих случаях существенно облегчается, если процесс управления удается разбить естественным или искусственным путем на отдельные шаги или этапы. Для того чтобы вести рассмотрение в общем виде, будем считать, что состояние объекта описывается многомерной переменной х={x1,...,хn).

Предполагая, что процесс является неуправляемым и неопределенность в состоянии природы отсутствует, дифференциальное уравнение, определяющее движение объекта, запишем в виде: x(t)=g(x), x(0)=c.

Решение этого уравнения записывают обычно как х=х(t), чем подчеркивается зависимость решения от времени. Однако не менее важно то, что решение уравнения зависит от начального состояния с. Поэто­му более строгой является такая форма записи, которая показывает явную зависимость решения х как от времени, так и начального состояния: х=х(c, t)=х[x(0), t].

Такая форма записи позволяет рассматривать состояние системы в произвольный момент времени t как не­которое преобразование начального состояния х(0)=с на интервале t.

Рассмотрим движение объекта на интервале от 0 до t2, который промежуточной точкой t1 разобьем на два ин­тервала длительностью t1 и τ=t2-t1.

Рассмотрим три состояния объекта управления:

начальное состояние х(о) =с;

состояние х(с, t1) в промежуточный момент t1 ;

состояние х(с, t2) в конечный момент t2;

К описанию последнего состояния можно подойти двояким образом. Это состояние можно рассматривать или как преобразование начального состояния х(о)=с на интервале t2=t1+ τ: х(с, t2)= х(с, t1 + τ) или как преобразование состояния х(с, t1) на интервале τ: х(с, t2)= х[x(с, t1), τ].

Так как оба выражения описывают одно и то же со­стояние, то, приравнивая их, получаем соотношение: х(с, t1 + τ)=х[x(с, t1), τ].


1.2.2. Представление динамического процесса в виде последовательности преобразований

Предположим, что динамический процесс х(с, t) на интервале от 0 до tf может быть естественным или искусственным образом представлен как многошаговый, и найдем подходящий способ описания такого процесса. Для того чтобы получить многошаговый процесс, интервал от 0 до tf следует разбить на n последовательных шагов, длительности которых примем равными τ1,τ2,..., τn. Обозначим через tk(k=0,...,n) моменты окончания k-го шага так, что tk+1= tk+τk+1, а через xk - состояние объекта в момент tk: xk=x(c,tk).

Рассмотрим состояние xk+1=x(c,tk+1)=x(c,tk+τk+1). Это выражение в можно представить в виде: xk+1=x[x(c,tk),τk+1]=x(xk,τk+1).

Это соотношение представляет состояние объекта xk+1 как результат преобразования состояния xk на (k+1)-м шаге.

Введем в рассмотрение оператор Т, который будет означать преобразование состояния процесса за один шаг:

Т (xk) = x(xk, τk+1), k = 0,n-1. Тогда получим: xk+1=Т (xk).

Полагая k=0,n-1, можем описать весь динамический процесс в виде последовательности преобразований

x0=c , x1=Т (x0), …, xn=Т (xn-1).


1.2.3. Многошаговый процесс управления

Динамический процесс, описываемый преобразованием xk+1=Т(xk), является неуправляемым. Для получения управляемого многошагового процесса необходимо иметь возможность на каждом шаге осуществлять не одно преобразование Т(хk), а одно из множества преобразований Тik).

Удобно считать, что конкретный вид преобразования будет зависеть от параметра uk, который на k-м шаге может принимать одно из множества значений Uk. Параметр uk будем называть управлением, а множество Uk - пространством допустимых управлений на k-м шаге. Преобразование, осуществляемое на k-м шаге, теперь можно записать в виде

xk+1=Т(xk, uk), ukUk .

Если в этом соотношении положить последовательно tk=0,n-1 и учесть начальное состояние х0, то получим описание всего управляемого многошагового процесса:

xk+1=Т(xk, uk), ukUk , tk=0,n-1, х0=x(0)=c.

Данное соотношение, называемое разностным уравнением объекта управления, аналогично дифференциальному уравнению, дающему описание непрерывного динамического процесса.


2. Оптимальное управление как вариационная задача


2.1. Математическая формулировка задачи оптимального управления


Характерной тенденцией в построении современных систем автоматического управления является стремление получать системы, которые в некотором смысле являются наилучшими. При управлении технологическими процессами это стремление выражается в том, чтобы улучать максимальное количество продукции высокого качества при ограниченном использовании ресурсов (сырья, энергии и т.п.). В системах управления кораблями, самолетами, ракетами стремятся минимизировать время, по истечении которого объект выходит в заданную точку или на заданную траекторию при ограничении угла отклонения рулей, количества расходуемого топлива и т. п. В следящих и стабилизирующих системах представляет интерес достижение максимальной точности при наличии всевозможных ограничений, накладываемых на координаты регулируемого объекта, исполнительные элементы и регулятор. Во всех этих примерах задачи управления сводятся к нахождению наилучшего в определенном смысле слова процесса из множества возможных процессов, т.е. относятся к классу динамических задач управления.


Случайные файлы

Файл
ref-16624.doc
26869.rtf
16322.rtf
11303.rtf
160495.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.