Электронно-вычислительная машина (49482)

Посмотреть архив целиком

Содержание


1

Теоретические основы ЭВМ

1.1 Информация и ее представление

1.2 Системы счисления

1.3 Логические операции

1.4 Единицы измерения информации

2 УСТРОЙСТВО СОВРЕМЕННЫХ ЭВМ

2.1 Схема фон Неймана

2.2 Основные устройства компьютера и их свойства

3 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

3.1 Типы программного обеспечения

3.2 Файловая система

3.3 Основные операции с файлами. Буфер обмена

4 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

4.1 Обработка текста. Текстовые процессоры

4.2 Компьютерная графика

4.3 Электронные таблицы

4.4 Реляционные базы данных

5 АЛГОРИТМЫ И ПРОГРАММЫ

5.1 Алгоритмы. Способы записи алгоритмов

5.2 Языки высокого уровня

5.3 Основные операторы и синтаксические конструкции

6 Компьютерные телекоммуникационные сети

6.1 Основные принципы организации современных компьютерных сетей

6.2 Служба Domain Name System (DNS)

6.3 Почтовая служба (E-mail)

6.4 Служба File Transfer Protocol (FTP)

6.5 Служба World Wide Web (WWW)

6.6 Ресурсы в сети


1 Теоретические основы ЭВМ


1.1 Информация и ее представление


Информатика — научное направление, занимающееся изучением законов, методов и способов накапливания, обработки и передачи информации с помощью ЭВМ (электронно-вычислительных машин, или компьютеров) и других технических средств.

Информация — сведения об окружающем мире, повышающие уровень осведомленности человека.

До тех пор пока информации было сравнительно немного, люди могли получать и обрабатывать ее без посредников. Увеличение объема информации привело к необходимости ускорения ее обработки. Для этого были разработаны механизмы, которые автоматизировали обработку информации. В настоящее время самым совершенным устройством переработки и хранения информации является компьютер.

Для машинной обработки информацию нужно записывать, обозначая буквы числами, т. е. кодировать ее. Поэтому необходимо знать способы записи числа.


1.2 Системы счисления


Системой счисления называют правила записи чисел с помощью некоторого набора знаков. В зависимости от способа использования этих знаков системы счисления делятся на позиционные и непозиционные.

В непозиционных системах счисления каждый знак обозначает всегда одно и то же число, и значения знаков в записи обычно суммируются. Поэтому для записи больших чисел приходится вводить все новые и новые знаки. Непозиционные системы неудобны для записи больших чисел и для выполнения арифметических действий.

Одна из непозиционных систем счисления используется до сих пор — это римская система счисления.

В римской системе счисления для небольших чисел используются такие знаки: I — один; V — пять; X — десять; L — пятьдесят; С — сто; D — пятьсот; М — тысяча.

В позиционных системах счисления один и тот же символ имеет разное количественное значение в зависимости от его позиции относительно других символов.

Поэтому в позиционных системах для записи любых чисел используется ограниченный набор знаков — цифр.

Наиболее распространенным способом записи чисел является десятичная система счисления. Каждое число записывается сочетанием десяти цифр, в котором вклад конкретной цифры зависит от ее позиции — разряда. Разряды отсчитываются справа налево. Первый разряд называется разрядом единиц, второй — десятков, третий — сотен и т. д.

Число в десятичной системе счисления можно представить с помощью операций сложения, умножения и возведения в степень. Например,

4321 = 4 103 + 3 102 + 2 101 + 1 10°.

Помимо десятичной системы счисления есть и другие позиционные системы: двоичная, троичная, четверичная, восьмеричная, шестнадцатеричная и т. д. Их названия соответствуют основаниям систем счисления.

Основание системы счисления — число цифр, допустимых в записи числа. Если число записано в позиционной системе счисления, отличной от десятичной, то основание указывается нижним индексом.

Например,

43218 = 4 83 + 3 82 + 2 81 + 1 8°.

Если основание системы счисления больше 10, то числа, которые больше 9, обозначают последовательно буквами латинского алфавита. Например,

AD2F16 = 10 163 + 13 162 + 2 161 + 15 16° = 4433510.

В компьютерах используется двоичном, система счисления.

Поскольку запись числа в двоичной системе получается достаточно длинной, в целях уменьшения ее длины часто используют восьмеричную или шестнадцатеричную системы счисления.

Для перевода числа из двоичной системы в десятичную достаточно записать его в виде суммы произведений и подсчитать результат. Например,

111001012 = 1 27 + 1 26 + 1 25 + 0 24 + 0 23 + 1 22 + 0 21 + 1 2° = 22910.

Аналогично осуществляется перевод из любой другой позиционной системы счисления в десятичную.

Правило перевода чисел из позиционной системы с основанием а10 в десятичную систему:



Перевод чисел из десятичной системы в систему с произвольным основанием. Метод перевода состоит в нахождении остатков от деления числа на степени основания той системы, в которую нужно перевести число. Последовательность этих остатков и есть запись числа в новой системе. Разряды отсчитываются справа налево. Делить надо до тех пор, пока не получен окончательный остаток.


Пример 1. Перевести из десятичной в двоичную систему число 123.

12310= 11110112.

Пример 2. Перевести число 475 из десятичной системы в шестнадцатеричную.



1.3 Логические операции


В основе всех действий с информацией лежат так называемые логические операции.

Логические переменные — переменные, которые могут принимать только два значения: ИСТИНА или ЛОЖЬ. Часто эти значения обозначают цифрами 1 и 0 (1 — ИСТИНА, 0 —ЛОЖЬ).

Логическая операция — действие, выполняемое над логическими переменными, его результат также либо ИСТИНА, либо ЛОЖЬ.

Базовые логические операции: логическое сложение (операция ИЛИ), логическое умножение (операция И) и отрицание (операция НЕ).

Логическое сложение (ИЛИ) — логическая операция, результатом выполнения которой является значение ИСТИНА, если хотя бы одна из логических переменных имеет значение ИСТИНА. Записывается с помощью знака «»: A  В.

Логическое умножение (И) — логическая операция, результатом выполнения которой является ИСТИНА, если все логические переменные имеют значение ИСТИНА, во всех остальных случаях результат — ЛОЖЬ. Записывается с помощью знака «»: А  В.

Отрицание (НЕ) — логическая операция, которая выполняется над одной логической переменной, ее результатом является значение ИСТИНА, если исходным значением было ЛОЖЬ, и ЛОЖЬ, если было ИСТИНА. Записывается двумя способами: А или .

Из логических переменных с помощью логических операций и скобок (для указания порядка действий) строятся логические выражения.

Например, (А  В)   (В  С).


1.4 Единицы измерения информации


Поскольку в компьютерах используется запись информации в двоичной системе счисления, то количество информации измеряют, подсчитывая число двоичных разрядов (ячеек), необходимых для ее записи. Для удобства приняты следующие единицы измерения информации:

1 бит — одна ячейка, может хранить только значения 0 или 1;

1 байт = 8 бит;

1 килобайт = 1024 байта;

1 мегабайт = 1024 килобайта;

1 гигабайт = 1024 мегабайта.

Обратите внимание на то, что единицы измерения информации основываются на степенях числа 2. Десятичные приставки (кило, мега и т. д.) дописываются только условно, так как 210 = 1024 — число, близкое к 1000.



2 УСТРОЙСТВО СОВРЕМЕННЫХ ЭВМ


2.1 Схема фон Неймана


Принципиальная конструкция современных компьютеров опирается на схему фон Неймана. Эта схема определяет функции отдельных частей компьютера (рис. 1).


Рис. 1


Согласно схеме фон Неймана обработка информации выполняется процессором. Все действия, совершаемые процессором заданы программой — принцип программного управления. Данные и программы во время работы хранятся в оперативной памяти, для долгосрочного хранения те и другие переводятся из оперативной во внешнюю память. При этом человек вводит данные через устройства ввода (клавиатура, мышь, сканер, микрофон), а получает результат обработки через устройства вывода (монитор, принтер, акустические колонки).

Все программы и данные для работы процессора хранятся в памяти. Если их там нет, то компьютер работать не будет.

Объем устройств памяти определяется максимальным количеством информации, которое они могут хранить.

Оперативная память не может хранить данные при отсутствии электропитания. Для хранения данных без электропитания применяются разные виды внешней памяти. Самые распространенные сейчас устройства внешней памяти — дисковые, чаще всего это всевозможные магнитные диски.

Постоянная память содержит программы, с которых начинается работа ЭВМ. Без этих программ компьютер не сможет получить программы и данные из внешней памяти. Постоянная память не зависит от электропитания. Однако эта память медленнее, а объем ее невелик. Для изменения данных в ней требуется специальное устройство — программатор. В современных персональных компьютерах такое устройство есть, но используют его редко — только тогда, когда надо исправить ошибки в базовых программах.

Определяя назначение каждого устройства, схема не указывает способы изготовления, принципы работы устройств и методы связи между ними.


Случайные файлы

Файл
25399.rtf
113210.rtf
42979.rtf
161694.rtf
141590.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.