Архив шпаргалок (3)

Посмотреть архив целиком

Билет №3

1. Сведение двойного интеграла к повторному. Сформулировать теорему и привести пример.

Область на плоскости Oxy будем называть простой (правильной) в направлении оси Oy, если любая прямая, проходящая через внутреннюю точку области и параллельная оси Oy, пересекает границу в двух точках.

Пусть - область, простая в направлении оси Oy. Рассмотрим выражение . Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по у во внутреннем интеграле (переменная х при этом рассматривается как постоянная) и подстановки по у в пределах от до получается функция, зависящая только от х, которая интегрируется в пределах от a до b. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок:

.

Можно показать, что двукратный интеграл обладает всеми свойствами двойного интеграла:

Свойства линейности и интегрирования неравенств следуют из этих свойств определённого интеграла; интеграл от единичной функции даёт площадь области: ;

Теорема о переходе от двойного интеграла к повторному.

Пусть - простая в направлении оси Oy область. Тогда двойной интеграл от непрерывной функции по области равна повторному интегралу от той же функции по области : .

2. Знакоположительные ряды. Сформулировать и доказать признак сравнения. Привести примеры.

Термином "положительный ряд" мы будем называть числовой ряд с неотрицательными членами: для .

Признак сравнения. Пусть даны два положительных ряда и , для которых, хотя бы начиная с некоторого места (при n>N), выполняется неравенство . Тогда:

если сходится ряд (В), то сходится ряд (А); если расходится ряд (А), то расходится ряд (В).

Другими словами, из сходимости большего ряда следует сходимость меньшего ряда, из расходимости меньшего ряда следует расходимость большего ряда. Сразу отметим, что из расходимости большего ряда, как и из сходимости меньшего ряда, никаких выводов о сходимости второго ряда сделать нельзя.

Доказательство этого утверждения непосредственно следует из сформулированного в начале раздела признака сходимости положительных рядов: если сходится больший ряд, то последовательность его частичных сумм ограничена, следовательно, ограничена последовательность частичных сумм меньшего ряда, следовательно, меньший ряд сходится; если расходится меньший ряд, то последовательность его частичных сумм неограничена, следовательно, неограничена последовательность частичных сумм большего ряда, следовательно, больший ряд расходится.

Примеры применения признака сравнения. 1. . Как и в случае несобственных интегралов, применение признака сравнения требует сначала сформулировать гипотезу о том, каково поведение ряда: если мы будем доказывать, что ряд сходится, мы должны будем оценить сверху общий член ряда так, чтобы ряд из оценок сходился; если будем доказывать, что ряд расходится, мы должны оценить общий член ряда снизу так, чтобы ряд из оценок расходился. В этом примере в числителе бесконечно большая (ББ) третьего порядка по n при n, в знаменателе - четвёртого порядка, поэтому при больших ~ . Доказываем, что ряд расходится: (мы уменьшили числитель и увеличили знаменатель), гармонический ряд расходится, следовательно рассматриваемый ряд расходится.



Случайные файлы

Файл
123864.rtf
7786.rtf
117366.rtf
101303.rtf
29351.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.