Архив шпаргалок (5)

Посмотреть архив целиком

Билет №5

1. Геометрические и механические приложения двойного интеграла.

Геометрический смысл каждого слагаемого интегральной суммы: если , то - объём прямого цилиндра с основанием высоты ; вся интегральная сумма - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью , равна ). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью , сверху - поверхностью , с цилиндрической боковой поверхностью, направляющей которой является граница области , а образующие параллельны оси . Двойной интеграл равен объёму этого тела.

Пусть задана плотность вещества плоской материальной области D (x, y). Выделим элементарную ячейку с массой dm и применим к ней известные формулы для материальной точки:

Статические моменты относительно осей OX, OY dmx = y dm = y (x, y) ds,

dmy = x dm = x (x, y) ds.

Моменты инерции относительно осей OX, OY dJx = y2 dm = y2 (x, y) ds,

dJy = x2 dm = x2 (x, y) ds.

Момент инерции относительно начала координат dJ0 = dJx + dJy.


Двойным интегралом по всей области D вычисляем те же характеристики для области D.

, , , , J0 = Jx + Jy.

Координаты центра тяжести , где - масса области D.

2. Знакоположительные ряды. Доказать признак Доламбера. Привести пример.

Термином "положительный ряд" мы будем наз числовой ряд с неотрицательными членами: для .

Признак сходимости Даламбера. Пусть для положительного ряда существует . Тогда

если q<1, то ряд сходится,

если q >1, то ряд расходится,

если q=1, то ряд может и сходиться, и расходиться.

Доказательство.

1. Пусть <1. Возьмём . . Если q<1, то число . Итак, при . Выпишем это неравенство для : , , , … , . Все члены ряда, начиная с N+2-го, меньше членов сходящейся геометрической прогрессии, поэтому сходится, поэтому сходится.

2. Пусть >1. Возьмём . .

Если q>1, то число . Итак, при . Выпишем это неравенство для : , , , … , . Все члены ряда, начиная с N+2-го, больше членов расходящейся геометрической прогрессии, поэтому расходится, поэтому расходится.

3. Для рядов и мы опять получим q =1. Первый из этих рядов сходится, второй расходится, но для обоих q=1, т.е. в этом случае вопрос о сходимости ряда действительно остаётся открытым.

Примеры. 1. ; , поэтому ряд сходится.



Случайные файлы

Файл
13905.rtf
138650.rtf
139942.rtf
12491.rtf
69670.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.