Архив шпаргалок (17)

Посмотреть архив целиком

Билет №17

1. Определение, мех смысл и свойства криволинейного интеграла 2-го рода. Привести примеры.

Определение криволинейного интеграла 2ого рода. Пусть в пространстве Oxyz дана кусочно-гладкая кривая , на которой определена функция . Разобьём кривую точками на частей, на каждой из дуг выберем произвольную точку , найдём и проекцию дуги на ось Ох, и составим интегральную сумму . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения кривой на дуги , ни от выбора точек , то функция Р(x,y,z) называется интегрируемой по кривой , а значение этого предела называется криволинейным интегралом второго рода, или криволинейным интегралом по координате х от функции Р(x,y,z) по кривой , и обозначается (или ).

Свойства криволинейного интеграла второго рода. Для этого интеграла существенны следующие свойства:

Линейность. Если функции интегрируемы по кривой (каждая по своей координате, то по этой кривой интегрируемы функции , и

16.3.3.2.2. Аддитивность. Если кривая разбита на две части и , не имеющие общих внутренних точек, то

Ориентируемость.
= -

Доказательство. Интеграл по дуге –L, т..е. в отрицательном направлении обхода дуги есть предел интегральных сумм, в слагаемых которых вместо стоит (). Вынося «минус» из скалярного произведения и из суммы конечного числа слагаемых, переходя к пределу, получим требуемый результат

Какую работу производит сила F(M) при перемещении точки M по дуге AB?

Если бы дуга AB была отрезком прямой, а сила была бы постоянной по величине и направлению при перемещении точки M по дуге AB, то работу можно было бы вычислить по формуле , где - угол между векторами. В общем случае эту формулу можно использовать для построения интегральной суммы, предполагая силу постоянной на элементе дуги достаточно малой длины. Вместо длины малого элемента дуги можно взять длину стягивающей ее хорды , так как эти величины – эквивалентные бесконечно малые величины при условии (первый семестр).



Случайные файлы

Файл
56827.rtf
114844.rtf
34586.rtf
23021.rtf
168048.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.