Архив шпаргалок (7)

Посмотреть архив целиком

Билет №7

1. Дать определение тройного интеграла и т.д.

Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения области V на подобласти , ни от выбора точек , то функция называется интегрируемой по области V, а значение этого предела называется тройным интегралом от функции по области V и обозначается .

Если расписать значение через координаты точки , и представить как , получим другое обозначение тройного интеграла: . Итак, кратко, .

Теорема существования тройного интеграла. Если подынтегральная функция непрерывна на области V, то она интегрируема по этой области.

Механические приложения тройного интеграла. Пусть V - тело в пространстве, в котором задано распределение объёмной плотности массы (,, где G - область, содержащая точку Р, - масса этой области, - её объём). Механические приложения двойного интеграла, Масса тела ;

координаты центра тяжести, ,

моменты инерции отн пл-ти Oxz, (относительно оси Ox), (относительно начала координат).


2. Знакоположительные ряды.

Термином "положительный ряд" мы будем наз числовой ряд с неотрицательными членами: для .

Интегральный признак Коши.

Теорема. Пусть члены положительного числового ряда являются значениями непрерывной монотонно убывающей неотрицательной функции при натуральных значениях аргумента: Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Доказательство. Обозначим . Согдасно геометрическому смыслу определённого интеграла, это площадь криволинейной трапеции под кривой у= над отрезком [1,n]. Частичная сумма - площадь ступенчатой фигуры, расположенной над криволинейной трапецией (сплошная верхняя граница на рисунке). Сумма - площадь ступенчатой фигуры, расположенной под криволинейной трапецией (пунктирная верхняя граница на рисунке). Очевидно, , или . Из этого неравенства, в котором , , - монотонно возрастающие с ростом n последовательности, и следуют все утверждения теоремы.

Теперь мы можем дать простое доказательство того, что ряд Дирихле

сходится при s>1 и расходится в остальных случаях. Функция удовлетворяет условиям теоремы: непрерывна, монотонно убывает, . Интеграл сходится, как мы знаем, при s>1 и расходится при других значениях s, ч.т.д.








Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.