Архитектура ЭВМ (46853)

Посмотреть архив целиком

Архитектура ЭВМ


С середины 60-х годов очень сильно изменился подход к созданию вычислительных машин. Вместо разработки аппаратуры и средств математического обеспечения стала проектироваться система, состоящая из синтеза аппаратных (hardware) и программных (software) средств. При этом на главный план выдвинулась концепция взаимодействия. Так возникло новое понятие — архитектура ЭВМ.

Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности вычислительной машины при решении соответствующих типов задач.

Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.

Архитектуру вычислительного средства необходимо отличать от структуры ВС. Структура вычислительного средства определяет его текущий состав на определенном уровне детализации и описывает связи внутри средства. Архитектура же определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил взаимодействия. Она устанавливает не все связи, а только наиболее необходимые, которые должны быть известны для более грамотного использования применяемого средства.

Так, пользователю ЭВМ не важно, на каких элементах выполнены электронные схемы, схемно или программно исполняются команды и тому подобное. Архитектура ЭВМ действительно отражает круг проблем, которые относятся к общему проектированию и построению вычислительных машин и их ПО.

Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно – математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, представленную на рисунке.





Положения фон Неймана:

  • Компьютер состоит из нескольких основных устройств (арифметико-логическое устройство, управляющее устройство, память, внешняя память, устройства ввода и вывода)

  • Арифметико-логическое устройство – выполняет логические и арифметические действия, необходимые для переработки информации, хранящейся в памяти

  • Управляющее устройство – обеспечивает управление и контроль всех устройств компьютера (управляющие сигналы указаны пунктирными стрелками)

  • Данные, которые хранятся в запоминающем устройстве, представлены в двоичной форме

  • Программа, которая задает работу компьютера, и данные хранятся в одном и том же запоминающем устройстве

  • Для ввода и вывода информации используются устройства ввода и вывода

Современную архитектуру компьютера определяют следующие принципы:

Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).

Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.

Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер - техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Реальная структура компьютера значительно сложнее, чем рассмотренная выше (ее можно назвать логической структурой). В современных компьютерах, в частности персональных, все чаще происходит отход от традиционной архитектуры фон Неймана, обусловленный стремлением разработчиков и пользователей к повышению качества и производительности компьютеров. Качество ЭВМ характеризуется многими показателями. Это и набор команд, которые компьютер способный понимать, и скорость работы (быстродействие) центрального процессора, количество периферийных устройств ввода-вывода, присоединяемых к компьютеру одновременно и т.д. Главным показателем является быстродействие - количество операций, какую процессор способен выполнить за единицу времени. На практике пользователя больше интересует производительность компьютера - показатель его эффективного быстродействия, то есть способности не просто быстро функционировать, а быстро решать конкретные поставленные задачи.

Как результат, все эти и прочие факторы способствуют принципиальному и конструктивному усовершенствованию элементной базы компьютеров, то есть созданию новых, более быстрых, надежных и удобных в работе процессоров, запоминающих устройств, устройств ввода-вывода и т.д. Тем не менее, следует учитывать, что скорость работы элементов невозможно увеличивать беспредельно (существуют современные технологические ограничения и ограничения, обусловленные физическими законами). Поэтому разработчики компьютерной техники ищут решения этой проблемы усовершенствованием архитектуры ЭВМ.

Так, появились компьютеры с многопроцессорной архитектурой, в которой несколько процессоров работают одновременно, а это означает, что производительность такого компьютера равняется сумме производительностей процессоров. В мощных компьютерах, предназначенных для сложных инженерных расчетов и систем автоматизированного проектирования (САПР), часто устанавливают два или четыре процессора. В сверхмощных ЭВМ (такие машины могут, например, моделировать ядерные реакции в режиме реального времени, прогнозировать погоду в глобальном масштабе) количество процессоров достигает нескольких десятков.

Скорость работы компьютера существенным образом зависит от быстродействия оперативной памяти. Поэтому, постоянно ведутся поиски элементов для оперативной памяти, затрачивающих меньше времени на операции чтения-записи. Но вместе с быстродействием возрастает стоимость элементов памяти, поэтому наращивание быстродействующей оперативной памяти нужной емкости не всегда приемлемо экономически.

Проблема решается построением многоуровневой памяти. Оперативная память состоит из двух-трех частей: основная часть большей емкости строится на относительно медленных (более дешевых) элементах, а дополнительная (так называемая кэш-память) состоит из быстродействующих элементов. Данные, к которым чаще всего обращается процессор находятся в кэш-памяти, а больший объем оперативной информации хранится в основной памяти.

Раньше работой устройств ввода-вывода руководил центральный процессор, что занимало немало времени. Архитектура современных компьютеров предусматривает наличие каналов прямого доступа к оперативной памяти для обмена данными с устройствами ввода-вывода без участия центрального процессора, а также передачу большинства функций управления периферийными устройствами специализированным процессорам, разгружающим центральный процессор и повышающим его производительность.



Методы классификации компьютеров


Номенклатура видов компьютеров сегодня огромная: машины различаются по назначению, мощности, размерам, элементной базе и т.д. Поэтому классифицируют ЭВМ по разным признакам. Следует заметить, что любая классификация является в некоторой мере условной, поскольку развитие компьютерной науки и техники настолько бурное, что, например, сегодняшняя микроЭВМ не уступает по мощности миниЭВМ пятилетней давности и даже суперкомпьютерам недавнего прошлого. Кроме того, зачисление компьютеров к определенному классу довольно условно через нечеткость разделения групп, так и вследствии внедрения в практику заказной сборки компьютеров, где номенклатуру узлов и конкретные модели адаптируют к требованиям заказчика. Рассмотрим распространенные критерии классификации компьютеров.

Классификация по назначению

большие электронно-вычислительные машины (ЭВМ);

миниЭВМ;

микроЭВМ;

персональные компьютеры.

Большие ЭВМ (Main Frame)

Применяют для обслуживания крупных областей народного хозяйства. Они характеризуются 64-разрядными параллельно работающими процессорами (количество которых достигает до 100), интегральным быстродействием до десятков миллиардов операций в секунду, многопользовательским режимом работы. Доминирующее положение в выпуске компьютеров такого класса занимает фирма IBM (США). Наиболее известными моделями суперЭВМ являются: IBM 360, IBM 370, IBM ES/9000, Cray 3, Cray 4, VAX-100, Hitachi, Fujitsu VP2000.


Случайные файлы

Файл
ФЕРм-40.doc
CHAST1.DOC
8661-1.rtf
41665.rtf
168292.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.