Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра МПУ











MATLAB

Реферат



Исполнитель:

Студентка группы М-53

Гумарева Л.С.







Гомель 2004


Введение


MATLAB – матричная лаборатория – наиболее развитая система программирования для научно-технических расчетов, дополненная к настоящему времени несколькими десятками более частных приложений, относящихся к вычислительной математике, обралботке информации, конструированию электронных приборов, экономике и ряду других разделов прикладной науки. Изучение MATLAB'а по фирменной документации, которая теперь прилагается на инсталляционном компакт-диске, занимает у начинающих пользователей слишком много времени не только из-за необходимости читать ее на английском языке со специфическим слэнгом, но, главным образом, ввиду неизбежного для таких руководств последовательного и достаточно формального изложения большого объема информации, а имеющиеся на русском языке пособия в основном следуют этому стереотипу. Даже для опытного специалиста по расчетам на компьютере такое изучение сопряжено с неоправданно большими затратами труда.

MATLAB предназначен прежде всего для программирования численных алгоритмов. Он разрабатывается уже более 15 лет и возник на основе более ранних прикладных пакетов LINPACK и EIGPACK, созданных в 1970-е гг. в США, и в свою очередь повлиял на появление таких систем, как MathCad, MAPLE и Mathematica. Совершенствование системы MATLAB происходило как в связи с достижениями в вычислительной математике, так и в связи с изменениями в архитектуре персональных компьютеров и развитием общесистемных средств. Со временем MATLAB был дополнен целым рядом уже упоминавшихся приложений (toolboxes), далеко раздвинувших границы его применимости. Далее речь пойдет лишь о ядре MATLAB'а, которое мы будем называть системой, и конкретно о ее версии 5.2, выпущенной фирмой MathWorks в январе 1998 г.

MATLAB – система программирования высокого уровня, работающая как интерпретатор и включающая большой набор инструкций (команд) для выполнения самых разнообразных вычислений, задания структур данных и графического представления информации. Команды эти разбиты на тематические группы, расположенные в различных директориях системы. Теперь в системе около 800 команд, и примерно половина из них вполне доступна начинающему пользователю. Команды с большим возможным объемом вычислений написаны на С, но много и таких команд, которые представлены в терминах этих первых. Поэтому система оказывается почти открытой для пользователя. Имеются большие возможности для вывода двумерной и трехмерной графики и средства управления ею. Пользователь может без особых затруднений добавлять свои команды и писать программы в терминах уже существующих команд; несколько сложнее делать это в рамках Фортрана и С. Можно обмениваться данными с программами на этих языках, а из них обращаться к системе. Краткость и наглядность программирования и исключительные возможности визуализации результатов делают систему очень эффективной при поисках и апробации новых алгоритмов, при проведении разовых расчетов и в учебном процессе, поскольку ее можно осваивать без предварительного знакомства с основами программирования и выполнять такие сложные примеры, которые невозможно делать с использованием других систем.

Документация по системе и ее приложениям содержит много тысяч страниц, и поэтому естественно встает вопрос о том, как ее осваивать. Работа с системой требует определенной математической подготовки, так что обучение можно начинать на втором курсе вуза. Основные сведения о системе изложены в руководствах /1/ – /2/: /1/ – это учебник с описанием вычислительных возможностей и архитектуры системы, /2/ – описание ее графических возможностей. Конечно, можно читать подряд /1/, /2/ и при необходимости обращаться за уточнениями к команде help или справочнику /3/, в котором описаны почти все команды. Но гораздо более эффективным, на наш взгляд, является изложение основных вычислительных процедур с помощью наиболее употребительных команд системы. Именно так мы и познакомимся с MATLAB'ом, а точнее примерно с 30-40 его командами. После этих занятий пользоваться документацией /1/ и /2/ будет гораздо легче.

Приложений к системе мы здесь не касаемся, а изучать их можно только после предварительного ознакомления с ней, а также с тем разделом науки, которому посвящено конкретное приложение. Отметим только, что большинство приложений означают для пользователя просто расширение списка доступных ему команд. Очень удобно то, что вся документация по системе и приложениям находится на компакт-диске, с которого происходит их установка, и при желании она может быть размещена также и на винчестере.

Для работы с системой достаточно иметь компьютер PC 486 с оперативной памятью хотя бы 16 Mb и с установленными на нем системами Windows 95 и MATLAB 5.2. В действительности MATLAB может работать и с друогими операционными системами, такими, например, как Macintosh, Unix и OS/2.

За рубежом вышло уже достаточно много учебных пособий по системе, но на русский язык ни одно из них пока не переводилось и даже в центральных библиотеках их теперь нет из-за сокращения финансирования. Изданные у нас пособия (например, /4/ – /12/) в основном следуют руководствам /1/ – /3/, тогда как нам представляется полезным дать менее формальное введение в предмет, опираясь прежде всего на интуицию слушателя.


1. Переменные


Переменные могут быть числовыми, текстовыми и других типов. У нас будут только числовые (это во всех деталях) и текстовые (совсем немного). Название переменной начинается с латинской буквы, далее могут быть буквы и цифры (не более 31 символа). Строчные и прописные буквы здесь различаются.

1. Числовые переменные. Это числа, векторы, матрицы и многомерные массивы. В компьютере все числа представлены примерно с 16 десятичными знаками, под каждое вещественное число отводится 8 байтов, под комплексное – 16.


1.1 Ввод чисел


Целые числа. В системе они не выделяются явно. Наберем и выполним отдельно каждую команду:

a=2 a=2.0 a=2; a=1:6 b=1:20 c=10:-2:5

Командное окно. Командная строка. Редактирование командной строки. Буфер исполненных команд. Как выбирать информацию из командного окна и из буфера исполненных командных строк. Нельзя допускать совпадения имени переменной с именем какой-либо команды.

Вещественные числа. Выполним по отдельности следующие команды:

d=0.5:0.3:2.5 d=.5:.3:2.5 d=.5+1:.3-.1:2.5*2 length(d)

d(end) d(end-2) d(1) d(0) d(2:7) d(7:-1:2) d(150)

f=linspace(1.5,30,143); length(f)

Индексы всегда начинаются со значения 1. Команды набираются на малом латинском регистре. Возможна многопараметричность команд.

Диапазон вещественных чисел:

realmax realmin

Другие константы MATLAB'а:

pi i j eps

Их не следует портить.

Комплексные числа:

q=1+2*i q=1+2i real(q) imag(q) abs(q) conj(q) s=angle(q) (здесь -

q=1+2*i;r=3; fi=0:.01:pi; z=q+r*exp(i*fi); plot(z) Это верхняя полуокружность.


1.2 Ввод векторов


Векторы-строки:

a=1:6 linspace(1,6,10)

Векторы-столбцы:

a=(1:6)' linspace(1,6,10)'

Операторы .' и ' :

y1=linspace(1,6,4)'; y2=y1; y=y1+i*y2; y.' y'

Команды linspace и: применимы для задания только вещественных векторов.

Ввод матриц. A(i,j) - элемент из i-й строки и j-го столбца. A(k) – k-й элемент таблицы, вытянутой в столбец.

A=[1,2;3,4] A=[1;2,3;4] A(2,2) A(3) A(5) size(A) A(3,4)=10 size(A)

A(5)=6 size(A) A(22)=3 A=A(:) A(22)=3 size(A) [m,n]=size(A)

A=reshape(1:24,4,6) size(A) A([1,end],:)=[] A(:,[1,end])=[] size(A)


1.3 Некоторые специальные матрицы


m=3;n=4; eye(m,n) eye(m) eye(n) ones(m,n) ones(m) ones(n) zeros(m,n)

rand(m,n) rand(m,n) rand('state',0) rand(m,n) rand(m) Это равномерное распределение на интервале (0, 1).

randn(m,n) randn('state',100) Это нормальное распределение, у него мат.ожидание=0, дисперсия=1

v1=1:4 v2=7:12 toeplitz(v1,v2) toeplitz(v1)


1.4 Некоторые простые команды


A=reshape(1:24,4,6) triu(A) triu(A,0) triu(A,2) triu(A,-1) tril(A)

v=1:5 diag(v) diag(v,2) diag(v,-1)

diag(A) diag(A,2) diag(A,-1)

A=reshape(1:24,4,6) rot90(A) rot90(A,2)

Выдачи на экран. Команда format с различными опциями.

В обычном формате (forrmat short) выдается 5 знаков, для целых чисел 9 знаков, порядки изменяются от -308 до +308. В полном формате (format long e) 16 знаков.

a=2 a=.001 a=1e-3 a=1e-5 a=123456789 a=1234567891 a=1+3*i

format long e, 2^.5, format short

Опция format short e позволяет получать ровные столбцы.

Они берутся в кавычки (на букве э на латинском регистре), символ занимает 2 байта. Используются для задания заголовков в числовых выдачах и на графиках, для задания формул и т.д. Можно переводить текстовые переменные в числовые и наоборот. Выполним в командной строке

t='Moscow - столица России' (после дефиса нужно перейти на русский шрифт и затем не забыть снова вернуться на латинский).

Другие типы переменных – ячейки и структуры.

Система help.

help выдает список директорий системы;

help <имя директории> выдает список команд директории;

help <имя команды> выдает описание команды.

type <имя команды> выдает текст команды или программы пользователя, если он составлен в терминах MATLAB'а.


2. Элементы xy-графики


1.Как открывать графическое окно:

figure whitebg zoom on

Теперь построим график функципи y=sin(2x), 0<=x<=5, выполнив строку

x=0:1e-3:5; y=sin(2*pi*x); plot(y) plot(x,y) ,grid

Использование режима zoom:

k=100; y=sin(2*pi*k*x); plot(y)

2.Автоматическое чередование цветов. Теперь будем, как правило, нумеровать строки.

1;x=linspace(0,1,20); k=.1:.1:.8; y=k'*x; plot(x,y)

Здесь определяется вектор-строка x=0:20, затем вектор-строка k из 8 угловых коэффициентов, далее получается матрица y=k'*x как произведение вектора-столбца k' на вектор-строку x. Строки этой матрицы состоят из точек соответствующих прямолинейных отрезков. Наконец, строятся графики этих отрезков как функций от x – первая нижняя линия (она желтая) соответствует k=.1, последняя, тоже желтая, – для k=.8. Мы видим, что цвета, которых всего 7, чередуются циклически в таком порядке (под русскими английские названия):

желтый фиолетовый голубой красный зеленый синий белый

yellow magenta cyan red green blue white

Вызовем строку 1 и отредактируем в ней команду plot:

1;x=linspace(0,1,20); k=.1:.1:.8; y=k'*x; plot(x,y,'g.')

т.е. добавим там третий (текстовой, ибо он в апострофах) аргумент. Все кривые на рисунке станут зелеными (green), а линии будут изображаться отдельными точками. Аналогично употребляются и другие цвета из этого списка – по первой букве. В текстовом аргументе может быть до трех символов. Для изображения точек графика помимо . употребляются еще : -- -. * x o + и некоторые другие символы.

3.Графики в полярных координатах:

x=1:.01:3; nx=length(x); r=x.^2; fi=linspace(0,5*pi,nx); polar(fi,r)

4.Еще один пример – легко строятся многозначные функции:

x=0:.1:6*pi; y=cos(x); plot(x,y) plot(y,x)

5.Управление осями:

axis off axis on axis ([-10,10,-5,20]) axis auto axis equal axis square

Размеры осей можно задавать и для трехмерной графики, но цвета в ней используются для характеристики величины ординаты и команда zoom там не работает.


3. Простые примеры, иллюстрирующие эффективность MATLAB


1. Суммирование. Найдем при заданном n частичную сумму ряда s(n) = 1/k^2, k=1:n. Для этого выполним строку

1;n=100; k=1:n; f=k.^(-2); plot(cumsum(f)), [sum(f),pi^2/6] =1000

Команда cumsum(f) подсчитывает все частичные суммы s(k) от f(1:k) для каждого k от 1 до n, так что на графике можно наблюдать процесс формирования нужной нам величины. В конце строки выдается численный и точный результаты:

ans = 1.6350 1.6449 .

Полагая n=1000, получим

ans = 1.6439 1.6449 ,

т.е. ошибку в 1 единицу 4-й значащей цифры.

Сходимость не всегда столь очевидна, как на этом графике. Чтобы в этом убедиться, усложним наш пример: при заданных m>1 и n найдем частичную сумму ряда s(m,n) = sum(1/k^m), k=1:n (при m=1 получается уже расходящийся гармонический ряд). Для проведения вычислений отредактируем строку 1:

2;m=2; n=1000; k=1:n;f=k.^(-m); plot(cumsum(f)), sum(f)

=1.5 =1e4

=1.2

и сначала для проверки получим свой старый результат. Но уже при m=1.5 у нас, глядя на график, нет полной уверенности в достижении сходимости. Это тем более так при m=1.2: для n=1000 ans=4.3358, а для n=1e4 ans=4.7991. Факт сходимости ряда при m=1.01 нельзя установить численно из-за низкой скорости его сходимости.

Чтобы лучше запомнить действие команды cumsum, вычислим (x/sin(x))dx, x[0, 3]. Подинтегральная функция f=x/sin(x) не имеет в нуле особенности, и поэтому достаточно выполнить строку

3;n=100; h=3/n; x=h/2:h:3-h/2; f=x./sin(x); plot(h*cumsum(f)), grid, sum(h*f) =1000

т.е. аппроксимировать f в серединах интервалов (эти точки x называют полуцелыми в отличие от концов счетных интервалов – целых точек). Сравнение ответа ans = 8.4495 и графика наводит на мысль о том, что пока сходимость еще не достигнута, но при n=1e3 ans = 8.4552, так что при n=1e2 со сходимостью в действительности все в порядке, а возрастание функции h*cumsum(f) на правом конце происходит из-за роста там функции f – это можно увидеть, выполнив

4;plot(f)

Для матрицы A команды sum и cumsum работают вдоль столбцов (значит, по первому индексу), а для вектора – вдоль него независимо от того, строка это или столбец. Чтобы провести суммирование для матрицы A вдоль ее строк, нужно выполнить sum(A,2), т.е. указать для выполнения команды второй индекс. Это правило относится ко многим командам MATLAB'a и к многомерным матрицам тоже – по умолчанию имеется в виду первый индекс, а в противном случае нужно всегда указывать, по какому индексу должна работать команда, и это указание не сохраняется для последующих команд.

2. Произведения. Аналогично суммированию с помощью команд prod и cumprod вычисляются и обрабатываются произведения. Например, найдем (1-1/k^2), k=2:100 (при k1/2), выполнив строку

1;n=100; k2=(2:n).^2; a=1-1./k2; cp=cumprod(a); cp(end), plot(cp/.5), grid

Результат cp(end) = 0.5050 говорит о том, что сходимость здесь не очень быстрая. Это видно и из графика, на котором представлена относительная ошибка результата. Обратите внимание на названия переменных k2=k^2 и cp=cumprod(..): при выборе имен переменных всегда нужно стремиться к тому, чтобы эти имена хоть как-то отражали суть дела (это особенно важно при написании больших программ, где много переменных).

При вычислении произведений можно выйти за числовую шкалу. Найдем, например, для каких k можно найти k!. Ясно, что максимально допустимое km вряд ли больше 200, так что строка

2;n=200; k=1:n; kf=cumprod(k); plot(kf)

должна дать ответ на наш вопрос. Из-за быстрого возрастания kf и ограниченной разрешимости дисплея (это не более 0.5% от максимального значения на графике) мы видим всего одну точку kf(km), перед которой, как нам ошибочно кажется, идут нули и за которой идут числа inf (infinity), вообще никак не представленные на рисунке. Точно так же графика обходится и с переменной NaN (not a number), и это обстоятельство может быть иногда полезным. Переменная NaN возникает в таких ситуациях:

0/0 inf-inf inf/inf

Переменные inf и NaN (они получаются со знаком) можно использовать в программах. Для определения km выполним строку

3;sum(isinf(kf))

в которой isinf(kf) выдаст 1 на тех позициях вектора размеров kf, где элементы kf есть inf, и 0 на остальных позициях. Поскольку ans=30, km=n-30=170, что можно было бы получить и сразу, выполнив строку

4;km=sum(isfinite(kf))

где isfinite отмечает те элементы числовой переменной, которые отличны от inf и NaN. При выходе произведения за числовую шкалу для сомножителей можно использовать команды

log (взятие натурального логарифма),

log10 (взятие десятичного логарифма),

abs (взятие модуля),

sign (взятие знака, выдающее 1, 0 и -1).

3. Логические задачи. Обычно при освоении программирования логические действия даются труднее арифметических. Приведем здесь два простых примера задач логического характера.

1. Напишем строку для нахождения общих элементов двух векторов:

x=1:20; y=15:30; [X,Y]=meshgrid(x,y); v=X(X==Y)

2. Второй пример несколько сложнее, и начинающие изучать MATLAB обычно пытаются решить его с помощью циклов for-end, что совершенно неправильно. Взяв на сторонах единичного квадрата по 200 интервалов, определим, сколько точек получившейся таким образом сетки попадает внутрь вписанной в него окружности. Нужная программа имеет вид

1;tic, x=0:1/200:1; [X,Y]=meshgrid(x); M=abs(X+i*Y-.5-i*.5)<1/2; s=sum(M(:)), t1=toc

и даст ответ s=31397 точек, t1=0.16 сек, тогда как строка для циклов for-end

2;tic, s=0;w=1:201; for I=w,for J=w,if norm([x(I),x(J)]-.5)<.5,s=s+1; end,end,end, s ,t2=toc

дает то же самое s и t2=7.47 сек, так что t2/t1=46. Это лишний раз говорит о том, что нужно разумно подходить к использованию операторов языка программирования.


4. Графический способ решения уравнений


1. Простой пример: найти корни уравнения x*sin(x^2)=0 на отрезке [0,3]. Программа:

1;x=0:.01:3; f=x.*sin(x.^2); plot(x,[f;0*f]), grid

2;ginput

В команде ginput точка снимается нажатием левой клавиши мыши, Enter – выход из ginput.

Проверим это другим способом:

3;nx=length(x); w=1:nx-1; x(find(f(w).*f(w+1)<0|f(w)==0)) Отв: 0, 1.77, 2.5.

Эту строку можно упростить:

4;nx=length(x); w=1:nx-1; x(f(w).*f(w+1)<0|f(w)==0)

Матрицы и векторы с элементами 0-1.

2. Сложный пример – неявные функции. Построим график неявной функции f(x,y)x3y-2xy2+y-0.2=0, x,y=[0, 1]. Это выполнит программа

1;h=.02; x=0:h:1; [X,Y]=meshgrid(x); f=X.^3.*Y-2*X.*Y.^2+Y-.2;

2;v=[0,0]; contour(x,x,f,v), grid

На графике зеленая линия (справа она двузначная) представляет искомый результат. Область в первом квадранте между этими кривыми обозначим через G. Эту задачу совсем непросто сделать в других системах программирования прежде всего потому, что вычисление образующих линии уровней точек – в общем случае очень сложная процедура.

Выясним, какой знак имеет f в области G, для чего выполним

3;mesh(x,x,f.*(f>0))

Это пример трехмерной, т.е. xyz-графики. В ней цвет используется для изображения амплитуды (значения z),

изменяясь с ростом z от темносинего через голубой, зеленый и желтый до темнокрасного.

Вычислим площадь S этой области:

4;S=h^2*sum(f(:)>=0) (S=0.7296).

Для h=0.01 выполним строку 1, затем строку 4 и получим S=0.7204, а для h=0.005 найдем S=0.7152. При интегрировании всегда естественно делать такие проверки.

Выясним, какой объем заключен между поверхностью f(x,y) и областью G, где f(x,y)>=0. Для этого снова возьмем в строке 1 h=0.02 и вычислим

5;V=h^2*sum(f(f>=0)) (V=0.1268)

Для h=0.01 V=0.1235, а для h=0.005 V=0.1219. Теперь не нужно писать f(:), поскольку f(f>=0) есть вектор.

Конечно, эти результаты приближенные (с точностью до 1 - 2%), но отметьте, как быстро и просто они были получены. Такие приемы можно применять для решения достаточно широкого круга задач.

Выполним строку

6;C=contour(x,x,f); clabel(C)

которая зашлет числовую информацию о графике в матрицу C и построит график, выбрав значения уровней автоматически. Из матрицы C можно последовательно выбирать все кривые.

Обобщения. Графическим способом можно решать системы уравнений и уравнения в комплексной плоскости. Команда contour3 строит линии уровней для функций f(x,y,z), при этом сетки по аргументам всегда должны быть прямоугольными.


5. Полиномы


По степени применимости, по разнообразию и качеству соответствующих команд скалярные полиномы – следующие за матрицами математические объекты в MATLAB'е. Полином

p(x)=anxn+an-1xn-1+...+a0 задается вектором-строкой p из чисел an, an-1, ... , a0,

т.е. коэффициентами, расположенными в порядке убывания показателя степени. Его степень n задавать не надо, поскольку n=length(p)-1; полином может быть и константой – тогда n=0; коэффициенты ak – любые комплексные числа. Вектор p интерпретируется системой как полином только тогда, когда он задается в качестве параметра для одной из команд, производящих вычисления с полиномами. Так как в этих командах не проверяется условие an0, надо стараться самим соблюдать его, поскольку иногда это может служить источником ошибок.

Основные команды для действий с полиномами таковы:

conv(p,q) – произведение полиномов p и q. Название команды происходит от слова convolution (свертка), поскольку коэффициенты произведения действительно получаются как компоненты свертки векторов p и q.

[q,r]=deconv(b,a) – частное (q) и остаток (r) от деления b на a, так что conv(a,q)+r=b.

residue(b,a) – разложение рациональной функции b(x)/a(x) на элементарные дроби над полем комплексных чисел с выделением целой части. Если a(x) имеет кратные или близкие друг к другу корни, результаты могут быть неверными, поскольку такая задача плохо обусловлена. Плохая обусловленность, т.е. крайне сильная зависимость результата от коэффициентов, иллюстрируется заключительным примером из этой темы.


Случайные файлы

Файл
113858.rtf
22023-1.rtf
REPORT.DOC
ref-13957.doc
ref-19922.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.