Моделирование системных элементов (46154)

Посмотреть архив целиком

Глава  Математическое моделирование системных элементов


Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564 - 1642гг.) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742 - 1804гг.) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862 - 1943гг.) констатировал: "Математика - основа всего точного естествознания".

Приведенные высказывания великих ученых, без дополнительных комментариев, дают полное представление о роли и значении математики как в научно-теоретической, так и предметно-практической деятельности специалистов.


1.1. Три этапа математизации знаний

Современная методология науки выделяет три этапа математизации знаний: математическая обработка эмпирических (экспериментальных) данных, моделирование и относительно полные математические теории.

Первый этап - это математическая, чаще всего именно количественная обработка эмпирических (экспериментальных) данных. Это этап выявления и выделения чисто феноменологических функциональных взаимосвязей (корреляций) между входными сигналами (входами ) и выходными реакциями (откликами ) на уровне целостного объекта (явления, процесса), которые наблюдают в экспериментах с объектами-оригиналами . Данный этап математизации имеет место во всякой науке и может быть определён как этап первичной обработки её эмпирического материала.


Второй этап математизации знаний определим как модельный. На этом этапе не-которые объекты выделяются (рассматриваются) в качестве основных, базовых (фун-даментальных), а свойства (атрибуты), характеристики и параметры других объектов исследования объясняются и выводятся исходя из значений, определяемых первыми (назовем их оригиналами). Второй этап математизации характеризуется ломкой старых теоретических концепций, многочисленными попытками ввести новые, более глубокие и фундаментальные. Таким образом, на "модельном" этапе математизации, т.е. этапе математического моделирования, осуществляется попытка теоретического воспроизве-дения, "теоретической реконструкции" некоторого интересующего исследователя объек-та-оригинала в форме другого объекта - математической модели.


Третий этап - это этап относительно полной математической теории данного уровня организации материи в данной или рассматриваемой предметной области. Третий этап предполагает существование логически полной системы понятий и аксиоматики. Математическая теория даёт методологию и язык, пригодные для описания явлений, процессов и систем различного назначения и природы. Она даёт возможность преодолевать узость мышления, порождаемую специализацией.


1.2. Математическое моделирование и модель


Математическое моделирование - это теоретико-экспериментальный метод познавательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов - математических моделей.

Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характеристики состояний объекта моделирования, а через них и выходные значения - реакции

, в зависимости от параметров объекта-оригинала , входных воздействий , начальных и граничных условий, а также времени.


Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала с различных точек зрения и в различных аспектах, последний может иметь различные математические описания и, как следствие, быть представлен различными математическими моделями.

Принимая во внимание изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж.Коэном.


Определение 2. Математическая модель - это формальная система, представляющая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.


Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами ("грамматика" и "синтаксис" математических выражений) приводят к формированию абстрактных математических объектов (АМО). Только интерпретация делает этот абстрактный объект математической моделью.

Таким образом, исходя из принципиально важного значения интерпретации в тех-нологии математического моделирования, рассмотрим ее более подробно.



1.3. Интерпретации в математическом моделировании


Интерпретация (от латинского "interpretatio" - разъяснение, толкование, истолкование) определяется как совокупность значений (смыслов), придаваемых каким-либо образом элементам некоторой системы (теории), например, формулам и отдельным символам. В математическом аспекте интерпретация - это экстраполяция исходных положений какой-либо формальной системы на какую-либо содержательную систему, исходные положения которой определяются независимо от формальной системы. Следовательно, можно утверждать, что интерпретация - это установление соответствия между некоторой формальной и содержательной системами. В тех случаях, когда формальная система оказывается применимой (интерпретируемой) к содержательной системе, т.е. установлено что между элементами формальной системы и элементами содержательной системы существует взаимно однозначное соответствие, все исходные положения формальной системы получают подтверждение в содержательной системе. Интерпретация считается полной, если каждому элементу формальной системы соответствует некоторый элемент (интерпретант) содержательной системы. Если указанное условие нарушается, имеет место частичная интерпретация.

При математическом моделировании в результате интерпретации задаются значения элементов математических выражений (символов, операций, формул) и целостных конструкций.

Основываясь на приведенных общих положениях, определим содержание интерпретации применительно к задаче математического моделирования.


Определение 3. Интерпретация в математическом моделировании - это информационный процесс преобразования абстрактного математического объекта (АМО) в конкретную математическую модель (ММ) конкретного объекта на основе отображения

непустого информационного множества данных и знаний, определяемого АМО и называемого областью интерпретации, в кообласть - информационное множество данных и знаний, определяемое предметной областью и объектом моделирования и называемое областью значений интерпретации.


Таким образом, интерпретацию следует рассматривать как один из основополагающих механизмов (инструментов) технологии математического (научного) моделирования.

Именно интерпретация, придавая смысл и значения элементам (компонентам) математического выражения, делает последнее математической моделью реального объекта.


1.4. Виды и уровни интерпретаций


Создание математической модели системного элемента - многоэтапный процесс. Основным фактором, определяющим этапы перехода от АМО к ММ, является интерпретация. Количество этапов и их содержание зависит от начального (исходного) информационного содержания интерпретируемого математического объекта - математического описания и требуемого конечного информационного содержания математического объекта - модели. Полный спектр этапов интерпретации, отражающий переход от АМО - описания к конкретной ММ, включает четыре вида интерпретаций: синтаксическую (структурную), семантическую(смысловую), качественную(численную) и количественную. В общем случае, каждый из перечисленных видов интерпретации может иметь многоуровневую реализацию. Рассмотрим более подробно перечисленные виды интерпретаций.


Cинтаксическая интерпретация


Синтаксическую интерпретацию будем рассматривать как отображение морфологической (структурной) организации исходного АМО в морфологическую организацию структуру заданного (или требуемого) АМО. Синтаксическая интерпретация может осуществляться как в рамках одного математического языка, так и различных математических языков.

При синтаксической интерпретации АМО возможны несколько вариантов задач реализации.

Задача 1. Пусть исходный АМО не структурирован, например, задан кортежем элементов. Требуется посредством синтаксической интерпретации сформировать морфологическую структуру математического выражения

(1)


Задача 2. Пусть АМО имеет некоторую исходную морфологическую структуру,

которая по тем или иным причинам не удовлетворяет требованиям исследователя (эксперта). Требуется посредством синтаксической интерпретации преобразовать в соответствии с целями и задачами моделирования исходную структуру Stв адекватную требуемую St,т.е.

(2)


Задача 3. Пусть АМО имеет некоторую исходную морфологическую структуру St, удовлетворяющую общим принципам и требованиям исследователя с точки зрения её синтаксической организации. Требуется посредством синтаксической интерпретации конкретизировать АМО со структурой Stдо уровня требований, определяемых целями и задачами моделирования


Случайные файлы

Файл
5098.rtf
30101.rtf
92037.rtf
2330.rtf
68234.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.