Компьютерное моделирование движения тел (46143)

Посмотреть архив целиком

Компьютерное моделирование движения тел

Кравченко Валерия

9 класс

2005

Введение

В настоящее время, в виду большого использования компьютеров на производстве и в вычислительных процессах, ставится задача привития навыков использования компьютеров глубже, чем это достаточно для обычного пользователя, ограниченного знанием программ Windows и Office.

Существующее обилие языков программирования в значительной степени потеснили позиции языка программирования БЕЙСИК (BASIC). Тем не менее, данный язык и сегодня позволяет решать задачи профессионального уровня. В то же время простота понимания и доступность его использования позволяет применить его как на компьютерах старого класса, так и современных мощных машинах (P-III, P-IV).

Таким образом, данная работа ставит целью показать возможности использования языка БЕЙСИК для решения математических (профессиональных) задач в условиях обучения учащихся средних школ и профессиональных училищ, и может быть включена в качестве учебного пособия по общетехнической подготовки учащихся по основам информатики и вычислительной техники.

Одним из видов подготовки специалистов различных профессий являются практические знания. Помимо приобретения практических навыков они должны развивать обобщенное мышление, так как без этого невозможно научить будущих специалистов самых разнообразным приемам решения технических задач.

Подготовка задач к решению на компьютере во многом способствует развитию абстрактного мышления, связанного с формализацией задач, разработке алгоритмов и программ. В работе использован пример решения типичной задачи с максимальным использованием наглядности и простоты управления, с использованием стандартной программы Qbasic.

Процесс подготовки и решения задач на компьютере является пока достаточно сложным и трудоемким требующий выполнения целого ряда этапов:

постановка задачи;

математическая формулировка задачи;

выбор численного метода вычисления;

разработка алгоритма решения задачи;

написание программы;

ввод в программы и исходных данных;

отладка программы;

решение задачи на компьютере.

Данная последовательность характерна для решения каждой задачи. Однако в процессе подготовки каждый этап может иметь более или менее выраженный характер. Выполнение этапов в процессе подготовке задачи носит характер последовательного приближения, так как уточнение задачи на последующем этапе приводит к необходимости возврата к предыдущему и повторному выполнению последующих этапов.

Учитывая то, что основная масса современных пользователей имеют возраст 15-30 лет и совершенно недавно обзавелись домашним компьютером, не обладают большой усидчивостью, и зачастую не задумываются над тем, что из чего берется, то более глубокое рассмотрение этапов подготовки решения задач является нецелесообразным. Поэтому непосредственно перейдем к рассмотрению вопросов работы на языке программирования БЕЙСИК. Для большей наглядности и лучшего понимания в качестве примера составим программу для решения задачи по механике из учебника физики 10 класса [4]. При этом составление программы разобьем на несколько этапов постоянно наращивая и раскрывая возможности языка БЕЙСИК.

1. Этап первый. Знакомство.

Запуск программы осуществляется файлом qbasic.exe. Если при первом запуске выдается сообщение об ошибке в pif-файле, то необходимо в нем (qbasic. pif) прописать путь установки программы Qbasic, а вообще проще удалить сам файл qbasic.pif. Не забудьте перед запуском программы в Свойствах файла qbasic.exe указать совместимость с установленной системой и установить Полноэкранный режим.

В языке БЕЙСИК используются следующие символы:

1) Буква латинского алфавита от A до Z.

2) Цифра от 0 до 9.

3) Специальные символы: + - * / ¬ . , : ; ( ) = > < ‘

4) Ключевые слова:

LET- пусть, READ- ввод, DATA- данные, DIM- размерность, PRINT- вывод, STOP- останов, END- конец, TO- к , STEP- шаг, GOTO- перейти, NEXT- конец цикла, INPUT- вод с экрана, DEFFN- определение функции, REM- комментарий, FOR- для, IF- если, GOSUB- переход к под программе, RETURN- возврат.

5) знаки операций:

а) арифметические: +(сложение), -(вычитание), *(умножение), /(деление), ¬ или ^ (возведение в степень);

б) отношения: >(больше), <(меньше), =(равно), <> или ><(не равно), >=(больше равно), <=(меньше равно).

Примеры записи [ 3 ] представлены в таблице 1.

Табл.1

Числа

Запись на БЕЙСИКЕ

2

0,65

-11,426

2,6 .104

0,00081

2

0.65 или .65

-11.426

2.6Е4

0.81Е-3 или .81Е-3

Математическая

На БЕЙСИКЕ

ax2+b

c-

A * X ^ 2 + B или

A * X * X + B

C - SQR(T^3 + 1)

(A*SIN(X)+B)/(C+D)


Стандартные функции [ 6 ]:


Математическая запись

Запись на Бейсике

|x|

sin x

cos x

tg x

arctg x

ex

ln x

log2 x

lg x

целая часть хзнак х (+1 при х > 0, 0 при х=0, -1 при x < 0) квадратный корень из х количество символов а$ выбирает из a$ n символов, начиная с первоговыбирает из a$ n символов, начиная с m-говыбирает n символов а$, начиная с последнегопреобразует число к символьному видуопределяет числовое значение а$определяет код первого символа а$указывает номер позиции для вывода следующего элемента в списке вывода оператора PRINT

вывод n пробелов, используется в списке вывода оператора PRINT

выдает случайное число из инте рвала (0,1)

ABS (x)

SIN (x)

COS (X)

TAN (x)

ATN (x)

EXP (x)

LOG (x)

LOG2(x)

LOG10(x)

INT (x)

SGN (x)

SQR (x)

LEN (а$)

LEFT$(a$,n)

MID$ (a$,m,n)

RIGHT$ (a$,n)

STR$ (x)

VAL (a$)

ASC (a$)

TAB (n)

SPC (n)

RND [(x)]


Откроем Qbasic и запишем для пробы несколько строк:

a=2

b=3

c=5

k=(a+b)*c

PRINT k

После ввода Run\Start, получили результат 25. Поупражнявшись с различными величинами переменных и арифметическими действиями выясняем, что удобно вычислять значение функции меняя значения переменных.

Для удобства рассмотрения возьмем обычную задачу из учебника физики, где нужно определить дальность полета и время полета тела брошенного с какой-то начальной скоростью V0 под углом к горизонту α, при этом усложним задачу: получим значение высоты и горизонтальной дальности тела через равные промежутки времени ∆t =1 сек, сопротивлением воздуха пренебрегаем.

Рассмотрим график полета тела представленный на рис. 1.

Как видно из графика скорость тела в любой точке траектории полета может быть определенна по формуле V=, в нашем случае вектор начальной скорости V0 определяется формулой V0 =

. При этом текущее значение скорости Vт0 в соответствии с законом всемирного тяготения определяется формулой V0т =

.

Исходя из этого проекция горизонтальной дальности до тела определяется формулой:

S= (V0х+ V1х+ V2х+…+ Vnx). ∆t

Так как Vx это прямолинейное равномерное движение, то V0x= V1x= V2x=…= Vnx , тогда S= V0x.n∆t = V0x.t, где t общее время полета тела. Таким образом проекция пути на ось Х будет иметь вид:

S=V0cos α . t= V0 n∆t cos α (1.1)

Рис.1

Высоту полета тела определяем в соответствии с прямолинейным равноускоренным движением по формуле [ 4 ]:

h= V0y.t+= V0sin α.t+

= V0sin α.n∆t +

(1.2)

Для построения такого графика не обходимо получить значение точек в плоскости X Y, которые будут отображать траекторию полета тела в каждый момент времени t.

Для составления программы используем формулы 1.1 и 1.2.

Войдем в Qbasic и наберем программу следующего вида:

REM полет тела

PRINT "t", "h", "s"

v = 50

g = 9.8

a = 30

f = a * 3.14 / 180

100 q = 1

t = t + q

s = v * t * COS(f)

h = v * t * SIN(f) - (g * t ^ 2) / 2

PRINT t, h, s

IF h < 0 THEN 200

GOTO 100

200 END

Где V-начальная скорость (м/с), g-ускорение свободного падения (м/с2 ), a-угол, f-формула пересчета угла в радианы, q-единица времени ∆t, t-текущее время, s- проекция горизонтальной дальности, h- высота. Каждой строчке в программе может быть присвоен номер или имя. Причем номера идут по возрастающей, при этом нет необходимости все строчки нумеровать. В данном случае между номером 100 и 200 заложено тело цикла в семь строк. Запуск программы осуществляется RUN\START.

Программа выдаст решение задачи из трех столбиков значений: t, h, s (табл.2).

Табл.2

t

H

s

1

20.08851

43.3079

2

30.37701

86.61581

3

30.86552

129.9237

4

21.55403

173.2316

5

2.442531

216.5395

6

-26.46896

259.8474


Из анализа полученных данных делаем вывод, что максимальная дальность падения тела лежит в пределах 216-259 м, а максимальная высота полета превысила 30 м. Более точные значения можно получить уменьшив дискретную составляющую времени ∆t. Если в программе переменной q присвоить 0.5; 0.25; 0.1 и т.д., полученные значения будут более точные. Но полученный объем данных становится не наглядным. Для решения данной задачи, значительно удобней, если решение будет представлено графически.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.