Расчет нагрузок с помощью ЭВМ (VADIM_4)

Посмотреть архив целиком

станка. Номинальный ток потребителя 35,3 А. Выбираем выключатель АЕ 2046 с номинальным током 63А.


Ток усгавки электромагнитного расцепителя:


Iуэм = 1,3*35,3=220,6 А;


Ток теплового расцепителя:


Iт= 1,3*35,3=45,9 А.


Пример выбора АВ для провода к IIP1;


Номинальный ток в проводе 107,4А; Выбираю АВ: А3710Б с Iном=160А. Ток уставки электромагнитного расцепителя:

27

Iуэм = 1,25(107,4+5  = 628,5 А.

3 *0,4* 0,5



Ток теплового расцепителя:


Iт = 1,3*Ip=l,3*107,4=139,4A.


Расчет и выбор автоматических выключателей сведен в таблицу 6.1


Iав аварийный ток линии;


Iдоп = 5*Iо - пусковой ток потребителя;


Iуэм - ток электромагниной уставки АВ;


Iнт - номинальный ток трансформатора;


– номинальный ток АВ;


Iо -расчетный ток линии;


Iпик = Iр+5 Iдв mах - Iдв mах - пиковый ток;


Iдв max - номинальный ток самого мощного двигателя.






Sнэ 2*160

Iнт =  =  = 461,9 А

3Uн 3*0.4


Расчет и вы6op автоматических выключателей сведен в таблицу 6.1.

6.2. Проверка проводников по согласованию с защитой

низковольтной схемы.


В пожароопасных производственных помещениях защита от перегрузок обязательна. От перегрузок сеть защищает в АВ тепловой расцепитель. Поэтому для расчетных значений тока теплового Iт (Табл.6.1), по таблице справочника выбираем номинальный ток максимальных тепловых расцепителей, этот ток и будет током зашиты. Проверка производится в соответсвии с условием :

Кпр - коэффициент учитывающей особенности прокладки:

Кпр = 1- так как прокладывается один кабель:

Iдоп - длительно допустимый ток выбранного типа проводника.

Кзащ - коэффициент защиты (Iдоп / Iзащ). Так как АВ применяется для защиты только от токов КЗ, а тепловая защита обеспечивается магнитным пускателем, то Кзащ =0,2А, (табл. 6.74.[3]).

Iзащ = 3*Iн - номинальный ток уставки электромагнитного расцепителя защитного АВ.

Пример проверки проводников по согласованию с защитой:


1. Токарно-винторезный станок:

Iном Iт = 45,9А; Iт ном= 50А=Iзащ;


Кзащ для теплового расцепителя = 1


Iдoп Kзaщ*Iзaщ Iдoп 50A


Iдопном = 60А; Сечение: 16мм2

2. Провод к ПР1:


Iт нoм Iт = 139,6A; Iт ном = 160А = Iзащ;

Iдоп 160А; Iдоп ном = 165А; сечение 70мм2


Результаты сведены в таблицу 6.2.


6.3. Проверка на устойчивость основного электрооборудования . низковольтной схемы.


Расчет тока КЗ в точке К1 показал, что наибольший ток КЗ в сети не превышает предела динамической устойчивости и автомашческих выключателей, следовательно все основное защитное электрооборудование выбрано верно.

7.К ШПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ.


7.1. Выбор компенсирующих устройств в сети 10 кВ.


Одним из основных вопросов, решаемых при проектировании и эксплуатации систем электроснабжения, является вопрос о компенсации реактивной мощности.

Компенсация реактивной мощности с одновременным улучшения качества электроэнергни является одним из направлений сокращения потерь электроэнергии и повышения эффективности электроустановок промышленных предприятий.

Расчет производим в соответствии с инструкцией по определению реактивной и мощности компенсирующих устройств (Оку).

Наиболыпая суммарная нагрузка предприятия, принимаемая для определения мощности компенсирующих устройств (КУ), равна:


Q max = Кн.св *Q р.ф; (7.1)


Где К н.св - коэффициент несовпадения по времени наибольших активной нагрузки энергосистемы и реактивной нагрузки промышленного предприятия, принимается равным К н.св == 0,9 [5].

Орф = 2533,8 кВар - расчетная суммарная реактивная нагрузка фабрики принимается по таблице.

Суммарная мощность компенсирующих устройств:


Qку = Qmах * Qэ1; (7.2) где Q 1 - оптимальная мощность передаваемая энергосистемой:

Qэ1 = а* Ррф; (7.3)


где а =0.6 коэффициент, определяемый по уровню подводимого напряжения, равного 6000; [6];

Ррф = 3973,7 кВт - расчетная активная нагрузка фабрики, принимаемая по таблице :


Qэ1 = 0,6*3973,7 = 2384,22 кВар;

Суммарная мощность КУ фабрики.


Q ку = 2407,18 - 2384,22 = 22,97 кВар.


На фабрике высоковольтные конденсаторные батареи (ВБК) не уста­навливаются, так как расчетная мощность КУ фабрики менее 1000 кВар на секцию шин 6000 В.


7.2. Выбор компенсирующих устройств в сети 0,4 кВ.


В качестве компенсирующих устройств в цеховых сетях прирленяг гся в основном комплексные конденсаторные установки (ККУ). При расчетах расчетах ККУ нужно стремиться к сокращению числа цеховых трансформаторов. Исходя из этого, количество трансформаторов уменьшаем до 2-х.

Определяем реактивную мощность, потребляемую из сети при уменьшении числа трансформаторов:

_________________________

Q = (Nmm-1)2 *Sнн2 *Kз2 - Pp2 (7.4)

_________________________

Q = ( 3-1)2 *160 2 * 0,762 - 224.462 = 93,62 кВар.;


Определим мощность компенсирующих устройств на один трансформатор:

Qр - Qх

Qнбк =  (7.5)

Nmm


249,05 - 93,62

Qнбк =  = 77,72 кВар.;

2


Nmр = 2;



Количество трансформаторов с ККУ.

По табл. 2.192 [1| выбираем ККУ: УК4-038-100УЗ.

Проверк 1 правильность выбора ККУ:


cos = Pp/Sp’ ;



Sp = Кз cв * Sнэ*Nтp = 0,76*160*2=243,2 кВа


  • полная мощность с учетом ККУ.


cos = 224,46 / 243,2 = 0,92 - коэффициент мощности более 0,85,



следовательно, расчет компенсирующих устройств произведен правильно.

Коэффициент загрузки трансформаторов с учетом компенсирующих устройств:


Sр’ 243,2

Kз =  =  = 0.76; (7.6)

Sнн*Nmp' 160*2



7.3 Расчет компенсации реактивной мощности с применением ЭВМ.


Рассматриваемая в данном разделе методика расчета мощности и размещения компенсирующих устройств (КУ) может быть использована при проектировании электроснабжения крупных промы пленных предприятий, к сети 6-10 кВ которых подключается значительное число цеховых трансформаторов. Правильно выбрать средства компенсации реактивной мощности для электрических сетей промышленного предприятия напряжением до 1000 В и 6-10 кВ можно только при комплексном рассмотрении этого вопроса. На промышенных предприятиях основные потребители реактивной мощьности присоединяются чаще всего к электрическим сетям до 1000 В. Компенсация реактивной мощности этих потребителей может осуществляться с помощью КУ, присоединенных непосредственно к сети до 1000 В либо к сети 6-10 кВ. Первое решение требует установки дорогих КУ низкого напряжения. Второе позволяет использовать более экономичных КУ на напряжение 6-10 кВ, но вызывает необходимость передавать реактивную мощность через цеховые трансформаторы, что в свою очередь приводит к увеличению их числа и росту потерь электроэнергии в них.

Правильный выбор мощностей КУ, размещенных в сетях до 1000 В в 6-10 кВ, возможен лишь при технико-экономических расчетах для различных вариантов размещения и мощности КУ и последующем сравнении расчетных затрат по каждому из вариантов.

Излагаемая ниже методика и алгоритм расчета базируются на основных положениях. Задача расчета формулируется следующим образом для расчетной схемы ( рис.1) определить мощности батарей конденсаторов низкого напряжения Qнн и 6-10 кВ Qв; реактивную мошьность, выдаваемую в сеть синхронными двигателями 6-10 кВ Qc; реактивную мощность, получаемую из энергосистемы в часы пик, Оэ которые обеспечили бы минимум расчетных затрат по системе электроснабжения, зависящих от этих величин, при некоторых заданных параметрах системы.

Идея алгоритма заключается в том, что при увеличении числа трансформаторов (Т) возможно уменьшение расчетных затрат за счет более дешевой реактивной мощности (РМ), вырабатываемой конденсаторными батареями, устанавливаемыми на высоком напряжении (ВБ). Данный алгоритм имеет ряд особенностей. Во-первых он предусматривает автоматическое формирование сразу нескольких вариантов размещения КУ в зависимости от баланса РМ на предприятии: первый - использование всех источников реактивной мощностии СД, ВБ и НБ (НБ- батареи конденсаторов, устанавливаемых на напряжении 0,4 или 0,66 кВ); второй - использование СД и НБ;

третий - использование только НБ. Причем третий вариант рассчитывается в любом случае. По каждому варианту определяются приведенные затраты, которые учитывают стоимость потерь активной мощности в Т, в СД и энергосистеме; затраты .связанные с компенсацией РМ, ВБ и ВН, а также капитальные затраты на ТП и подключение ВБ:


D1Qc D2Qc Pкк12 B2Qэ2

З = С (  +  + ) + В1Qэ + + р пор301 +

Qнно NcQнсQ2 S2номN


+КтNp нор +310Qнн+311Qв.



Во-вторыx, данном алгоритме число Т увеличивается не на два, а до тех пор, пока затраты по текущему варианту не превысят на 5% наименьшее из них. При этом контроль затрат производится по первому варианту размещения КУ. В-третьих, по желанию пользователя (если г = 0) предусмотреиа возможность повторного счета для режима полной компенсации РМ. К ограничениям алгоритма, как и самой методики, отсутствие учета потерь энергии в распределительной сети. Программа для расчета компенсации -KOMPENS. Исходные данные, необходимые для расчета, вводятся в следующем порядке:


Расчетная активная мощность, МВт;

Q(Qо) - paсчетная реактивная мощность, Мвар;






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.