Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента (45139)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ


Международная «Лига развития науки и образования» (Россия)

Международная ассоциация развития науки, образования и культуры России (Италия)


Международный «ИНСТИТУТ УПРАВЛЕНИЯ»


(г. Архангельск)





КУРСОВАЯ РАБОТА

ПО ДИСЦИПЛИНЕ

«Информатика и программирование»

Тема : «Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента»







Выполнил: студент экономического факультета, группы 12-И Воробьев А.А.

Проверил: Горяшин Ю.В.




Архангельск

2004

Аннотация

Цель курсовой: для функции заданной в таблице построить интерполяционный многочлен и вычислить по нему значение функции для заданного значения аргумента. Составить блок схему алгоритма и программу на одном из языков высокого уровня (С++) для вычисления заданного интерполяционного многочлена. В программе предусмотреть возможности ввода любого числа значений функции для чего организовать хранение ее значении при помощи линейного списка.

























Содержание

  1. Аннотация

  2. Содержание

  3. Глава №1

  4. Глава №2

  5. Заключение

  6. Список литературы

  7. Приложение

  8. Программа























Введение.

Возможность постановки вычислительного эксперимента на ЭВМ приводит к существенному ускорению процессов математизации науки и техники, к постоянному расширению области приложения современных разделов математики. Количественные методы внедряются практически во все сферы человеческой деятельности, что приводит к расширению круга профессий, для которых математическая грамотность становится необходимой. Однако, развитие науки и техники, современная технология производства ставят перед специалистами задачи, для которых либо не возможно, либо крайне громоздко и сложно получение алгоритма классическими методами математического анализа. Отсюда стремление использовать различные численные методы, разрабатываемые вычислительной математикой и позволяющие получить конечный числовой результат с приемлемой для практических целей точностью.

Численный метод решения задачи - это определенная последовательность операций над числами, т.е. вычислительный алгоритм, языком которого являются числа и арифметические действия. Такая примитивность языка позволяет реализовать численные методы на ЭВМ, что делает их мощными и универсальными инструментами исследования. Численные методы используются в тех случаях, когда не удается найти точное решение возникающей математической задачи. Это происходит главным образом, потому, что искомое решение обычно не выражается в привычных для нас элементах или других известных функциях. Даже для достаточно простых математических моделей иногда не удается получить результат решения в аналитической форме. В таких случаях основным инструментом решения многих математических задач выступают численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами, при этом результаты получаются также в виде числовых значений.

Многие численные методы разработаны давно, однако при ручных вычислениях они могли использоваться лишь для решения узкого круга не слишком сложных задач, и только с появлением высоко производительных ЭВМ начался период бурного развития методов вычислительной математики и их внедрения в практику. Численные методы приобрели важнейшее значение как мощное математическое средство решения практических задач в различных областях науки и техники.

Интерполирование, интерполяция,- приближенное или точное нахождение какой-либо величины по известным отдельным значениям или других величин, связанных с ней. В первоначальном понимании- восстановление функции (точное или приближенное) по известным ее значениям или значениям ее производных в заданных отрезках.

Основное применение интерполяции - это вычисление значении табулированной функции для неузловых (промежуточных) значений аргумента, поэтому интерполяцию часто называют «искусством чтения таблиц между строками». (П.Ф. Фильчаков)





















Глава 1

Основные направления исследования: разрешимость задачи интерполирования, простейших интерполяционных формул, применение интерполяции для построения приближенных интерполяционных формул, применение интерполяции для построения приближенных и численных методов решения различных задач математики и ее приложений.

Приближенное представление функций. Интерпояционные функции на отрезке по значениям ее в узлах сетка - означает постоение другой функции такой, что В более общей постановке задача интерполирования функции состоит в постоении не только из условий совпадения значений функций и на стеке , но и совпадения в отдельных узлах производных до какого-то порядка или некоторых других соотношений, связанных и .

Обычно стоится в виде

,

где - некоторая заранее выбранная система линейно независимых функций. Такое интерполирование называется л и н е й н ы м относительно системы , а интерполяционным многочленом по системе .

Выбор системы определяется свойством класса функций, для приближения которого предназначаются интерполяционные формулы. Например, для приближения - периодической функции на за естественно взять тригонометрическую систему функций, для приближения на полу оси ограниченных или возрастающих функции- систему рациональных или показательных функций, учитывающих поведение приближаемых функций на бесконечности и т.д.

Чаще всего используя а л г е б р а и ч е с к о е интерполирование: . Существует ряд явных представлений алгебраических интерполяционных многочленов. Например интерполяционный многочлен Лагранжа имеет вид:



В задаче приближения функции и на всём отрезке алгебраическое интерполирование высокого порядка выполняется сравнительно редко. Алгебраический интерполяционный процесс не является сходящимся в классе непрерывных на функций. Обычно ограничиваются линейным интерполированием по узлам и на каждом отрезке или квадратичным по трем узлам ,, на отрезке .

Эффективным аппаратом приближения функции являются интерполяционные сплайны, но их построение в ряде частных случаях требует значительных вычислительных затрат.

На практике чаще всего используются параболические или кубические полиноминальные сплайны. Интерполяция кубическим сплайном дефекта 1 для функции