Классификация и техническая реализация основных устройств ЭВМ (ref-15919)

Посмотреть архив целиком





ВСЕРОСИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

_______________________________________________________________________


КАФЕДРА АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ЭКОНОМИЧЕСКОЙ

ИНФОРМАЦИИ













КУРСОВАЯ РАБОТА


НА ТЕМУ: КЛАССИФИКАЦИЯ И ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ ОСНОВНЫХ УСТРОЙСТВ ЭВМ







Исполнитель:

специальность маркетинг

группа 211

Ф.И.О. студента Пилипенко

Елизавета Анатольевна

зачетной книжки 98мад2019­­­­­­­­­­­­



Руководитель:

Ф.И.О. руководителя

Суворова Валентина Ивановна







Москва 2000 г.









Содержание


Стр.


Введение…………………………………………………………………………..3.


  1. Теоретическая часть


а) Общий вид вычислительной системы……………………………………….5.


б) Начальная последовательность действий……………………………………6.


в) Элементы организации основных блоков ЭВМ……………………………..6.


г) Архитектурная организация процессора ЭВМ………………………………6.


д) Проверка в несколько миллионов шагов……………………………………..7.


е) Организация памяти ЭВМ…………………………………………………….8.


ж) Организация систем адресации и команд ЭВМ……………………………10.


з) Организация системы входа/выхода…………………………………………11.


и) Система внешних устройств ЭВМ (периферийное оборудование)…………13.


2. Приложение……………………………………………………………………19.


3. Практическая часть…………………………………………………………..22.


Список использованной литературы………………………………………….24.





Введение



ЭВМ, способные решать множество разнообразных сложных задач, причём с молниеносной быстротой, приводят непосвящённых в трепет. Наверное, поэтому, я выбрала для себя эту тему. Даже анализ электронных схем компьютера не может до конца объяснить его поразительных возможностей. А между тем, его внутренняя структура и принципы работы, сами по себе просты. В этой работе передо мной стоит задача раскрыть простоту устройства ЭВМ и его реализацию.


В теоретической части будут рассмотрено шесть вопросов:


1) Общий вид вычислительной системы.

2) Элементы организации основных блоков ЭВМ.

3) Структурная организация процессора ЭВМ.

3) Организация памяти ЭВМ.

4) Организация систем адресации и команд ЭВМ.

5) Организация системы ввода/вывода ЭВМ.

6) Система внешних устройств ЭВМ (периферийное оборудование).


В практической части будет рассмотрено задание с использованием пакета электронных таблиц (Excel).

Подсчёт остатков на конец месяца по каждому виду топлива и получение итогов по графам документа.


Вся моя работа выполнена на ПС ЭВМ с использованием программ Microsoft Word и Excel.

Сегодня невозможно представить нашу жизнь без компьютеров и компьютерных систем. Во всех сферах жизни они нашли своё применение. На заводах используется труд программируемых ВМ, в самолётах, в подводных лодках; при обучении в садах, школах, вузах; нашли они своё применение и дома: программируемые стиральные машины, микроволновые печи и т.д., с каждым днём круг их применения расширяется и уже невозможно представить себе жизнь без ЭВМ.

ЭВМ состоит из нескольких основных компонентов. Каждому из основных компонентов вычислительной системы отведены определённые функции, которые выполняются определённым способом. Два таких компонента впервые были описаны в 1833 году Чарльзом Бебиджем в проекте Аналитической машины. Бебидж ввёл название устройства, названного «мельницей», в котором производятся действия над величинами, и понятие запоминающего устройства, «склад», где хранятся значения величин и результаты выполняемых «мельницей» операций. В наше время – это соответственно арифметико-логическое устройство (АЛУ) и оперативное запоминающее устройство (ОЗУ). АЛУ является частью процессорного устройства компьютера, которое выполняет инструкции, а так же управляет информацией, поступающей в машину от таких устройств, как клавиатура или световое перо, и выводимой из неё, например, на печатающее устройство (принтер) или телевизионный экран (видеомонитор). Все компоненты компьютера в основном работают по принципу последовательной обработки данных. Идёт ли речь о персональном компьютере или о мощном суперкомпьютере, оба они решают задачи в незамысловатой последовательной манере, шаг за шагом, в каждый момент времени, анализируя и исполняя только одну инструкцию, после чего переходят к следующей. Даже решение простеньких задачек – типа сложить два и два, или перейти от строчных букв к прописным – требует сотен мелких процедур. Но каждый такой крошечный шаг совершается быстрее, чем в «мгновение ока», и буквально за считанные секунды эти бесчисленные мелкие операции слагаются в решение задачи, – будь то вывод на экран упорядоченного по алфавиту списка или изображение сбитого летательного аппарата, напавших на Землю инопланетян в увлекательной видеоигре. В мгновение ока можно побывать в крупных музеях, – рассматривая картины известных художников, произведения известных скульпторов; библиотеках – читая оригиналы книг любого писателя или поэта и т.д. не выходя из дома используя связь Интернет.

Любому человеку, работающему с ЭВМ нужно ознакомиться с историей вычислительных систем, их устройством. Не просто из любопытства, а и потому, что это может пригодиться в дальнейшей работе.




Теоретическая часть


Общий вид вычислительной системы.


Схематические изображения, представленные в приложении, помогают понять внутреннее устройство и принципы действия типового персонального компьютера, однако, по существу, данные элементы характерны для любой вычислительной системы. Например, клавиатура – самое распространённое устройство для ввода в машину данных и программ. Стандартный вариант клавиатуры, состоящий из 101 клавиши (в Приложении рис.1). Так называемая «Windows – клавиатура» имеет ещё три специальных клавиши для удобства работы с «Windows», телевизионный дисплей и принтер, – стандартные устройства вывода информации. Большинство систем содержат также устройства, аналогичные накопителю на магнитных дисках, в котором записывается информация, предназначенная для длительного хранения, и размещается дополнительное программное обеспечение, не умещающееся в оперативной памяти компьютера. Все эти внешние устройства (Приложение рис.1) подключаются к системному блоку компьютера, электронные компоненты, которого, показаны в развёрнутом виде (Приложение рис.1 б).

Основная системная плата содержит центральное процессорное устройство (ЦПУ) – микропроцессор, управляющий работой всех компонентов компьютера. Каждая инструкция сначала анализируется центральным (а иногда и вспомогательным) процессором, после чего исполняется. Важной частью системной платы является кварцевый генератор токовых импульсов. Своеобразные «часы» системы, координирующие и синхронизирующие работу множества электрических цепей компьютера. При включении машины под действием электрического тока кварцевый кристалл, имеющий строго определённые размеры, начинает вибрировать с постоянной частотой, достигающей в ряде случаев миллионов колебаний в секунду. При каждом колебании кристалл генерирует импульс напряжения. Эти регулярно повторяющиеся импульсы вместе с другими сигналами задают темп работы устройств и обеспечивают синхронное срабатывание различных электронных элементов.

На системной плате имеются также порты для связи с устройствами ввода-вывода, а также микросхемы двух типов внутренней памяти: постоянного запоминающего устройства (ПЗУ), служащего лишь для считывания данных, или оперативного запоминающего устройства (ОЗУ), используемого как для считывания, так и для записи информации. (Эта память называется также запоминающим устройством с произвольной выборкой, ЗУПВ, но на практике чаще используется термин ОЗУ.) ПЗУ содержит инструкции, которые не подлежат изменению. ОЗУ хранит программы и данные только до тез пор, пока не отключается питание. Пользователь может свободно стирать и записывать данные в ОЗУ, но при отключении питания вся хранящаяся там информация пропадает.

Каждая микросхема памяти содержит информацию в форме двоичных разрядов (битов), закодированных в виде электрических зарядов. Эти заряды хранятся в определённых ячейках, т.е. распределены в микросхеме по определённым адресам. Адрес также выражается в двоичном виде. Центральный процессор генерирует последовательный адрес в памяти; информация, найденная по этому адресу (она также закодирована в виде импульсов), поступает в процессор для обработки. Коды адресов передаются по параллельным проводящим линиям, образующим в совокупности адресную шину. Информация передаётся в центральный процессор по параллельным линиям шины данных. Дешифратор адреса и специальный набор переключателей (на них зафиксированы некоторые важные адреса) помогают направлять электрические импульсы по назначению.


Случайные файлы

Файл
45102.doc
VDV-0077.DOC
158946.rtf
92735.rtf
138253.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.