Трёхмерная компьютерная графика (30697-1)

Посмотреть архив целиком

Трёхмерная компьютерная графика


Введение

Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации. Знание её основ в наше время необходимо любому ученому или инженеру. Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.

На сегодняшний день создано большое количество программ, позволяющих создавать и редактировать трёхмерные сцены и объекты. Среди наиболее популярных можно назвать такие как 3D studio Max, которая позволяет трёхмерные компьютерные ролики. Область её применения в основном реклама, мультипликация и оформление телевизионных передач. Другой не менее популярный пакет программ это Auto-CAD. Он применяется в основном инженерами и проектировщиками для создания чертежей и пространственных моделей. Кроме этих существует множество других специализированных программных пакетов охватывающих практически все стороны человеческой жизни.

Среди многообразия возможностей, предоставляемых современными вычислительными средствами, те, что основаны на пространственно-образном мышлении человека, занимают особое место. Современные программно-оперативные средства компьютерной графики представляют собой весьма эффективный инструмент поддержки такого мышления при выполнении работ самых разных видов. С другой стороны именно пространственно-образное мышление является неформальной творческой основой для расширения изобразительных возможностей компьютеров. Это важное обстоятельство предполагает взаимно обогащающее сотрудничество всё более совершенной техники и человека со всем богатством знания, накопленного предшествующими поколениями. Глаз и раньше был эффективным средством познания человеком мира и себя. Поэтому столь привлекательной оказывается компьютерная визуализация, особенно визуализация динамическая, которую следует рассматривать как важнейший инструмент для обучения наукам.

Введение в машинную графику

Современная машинная графика - это тщательно разработанная дисциплина. Обстоятельно исследованы сегменты геометрических преобразований и описаний кривых и поверхностей. Также изучены, но все еще продолжают развиваться методы растрового сканирования, отсечение, удаление линий и поверхностей, цвет, закраска, текстура и эффекты прозрачности. Сейчас наибольший интерес представляют именно эти разделы машинной графики.

Машинная графика - сложная и разнообразная дисциплина. Для изучения её, прежде всего, необходимо разбить на обозримые части. Прежде всего необходимо рассмотреть методы и алгоритмы растровой графики. Это достаточно простой, но очень важный раздел машинной графики. В этом разделе рассматриваются алгоритмы рисования отрезков и окружностей на экране монитора, методы растровой развёртки, заполнения многоугольников, устранения ступенчатости или лестничного эффекта. Отдельно следует рассмотреть методы отсечения изображения, т.е. отбора той информации, которая необходима для визуализации конкретной сцены.

При построении трёхмерной сцены возникает проблема удаления невидимых линий и поверхностей. Это одна из наиболее сложных составляющих визуализации трёхмерных объектов. Способы достижения эффектов прозрачности, отражения и т.п., строго говоря, не входят в задачу удаления невидимых частей трёхмерных объектов и, тем не менее, некоторые из них тесно связаны с этой проблемой. Например, построение теней. Не смотря на это, в компьютерной графике выделяется довольно большой раздел, посвящённый построению реалистичных изображений, в котором подробно рассматриваются методы создания таких эффектов как зеркальное отражение, преломление лучей в различных средах, тени, фактура объекта. Так же рассматриваются различные источники света, их спектральные характеристики и форма. Сюда же относятся цветовые эффекты, сглаживание поверхностей и многое другое.

Как видно из выше сказанного компьютерная графика это достаточно объемная дисциплина, поэтому я остановлюсь лишь на некоторых её наиболее интересных аспектах.

Растровая графика

Любое изображение, в том числе и трёхмерное, состоит из графических примитивов. Поэтому, прежде всего, необходимо знать специальные методы генерации изображения, вычерчивание прямых и кривых линий, закраски многоугольников, создающей впечатление сплошных объектов. Рассмотрим некоторые из этих методов.

Алгоритмы вычерчивания отрезков

Поскольку экран дисплея можно рассматривать как матрицу дискретных элементов (пикселов), каждый из которых может быть подсвечен, нельзя непосредственно провести отрезок из одной точки в другую. Процесс определения пикселов, наилучшим образом аппроксимирующих заданный отрезок, называется разложением в растр. Для горизонтальных, вертикальных и наклоненных под углом 45 отрезков выбор растровых элементов очевиден. При любой другой ориентации выбрать нужные пикселы труднее.

Существует несколько алгоритмов выполняющих эту задачу. Рассмотрим два из них.

Цифровой дифференциальный анализатор

Один из методов разложения отрезка в растр состоит в решении дифференциального уравнения, описывающего этот процесс. Для прямой линии имеем:

или н

Решение представляется в виде

  1. )

где x1, y1 и x2, y2 концы разлагаемого отрезка и yi – начальное значение для очередного шага вдоль отрезка. Фактически уравнение (2.1.) представляет собой рекуррентное соотношение для последовательных значений y вдоль нужного отрезка. Этот метод, используемый для разложения в растр отрезков, называется цифровым дифференциальным анализатором (ЦДА). В простом ЦДА либо , либо (большее из приращений) выбирается в качестве единицы растра. Ниже приводится простой алгоритм, работающий во всех квадрантах:


Процедура разложения в растр отрезка по методу цифрового дифференциального анализатора (ЦДА)

предполагается, что концы отрезка (x1,y1) и (x2,y2) не совпадают

Integer – функция преобразования вещественного числа в целое.

Примечание: во многих реализациях функция Integer означает взятие целой части, т.е. Integer( 8.5) =  9, а не  8. В алгоритме используется именно такая функция.

Sign  функция, возвращающая  1, 0, 1 для отрицательного нулевого и положительного аргумента соответственно.


if abs ( x2  x1 )  abs ( y2  y1 ) then

Длина = abs ( x2  x1 )

else

Длина = abs ( y2  y1 )

end if

полагаем большее из приращений x или y равным единице растра

x = ( x2  x1 ) / Длина

y = ( y2  y1 ) / Длина

округляем величины, а не отбрасываем дробную часть

использование знаковой функции делает алгоритм пригодным для всех квадрантов

x = x1 + 0.5 * Sign ( x )

y = y1 + 0.5 * Sign ( y )

начало основного цикла

i =1

while ( i  Длина )

Plot ( Integer ( x ), Integer ( y ) )

x = x + x

y = y + y

i = i + 1

end while

finish

С помощью этого алгоритма получают прямые, вполне удовлетворительного вида, но у него есть ряд недостатков. Во-первых, плохая точность в концевых точках. Во-вторых, результаты работы алгоритма зависят от ориентации отрезка. Вдобавок предложенный алгоритм использует вещественную арифметику, что заметно снижает скорость выполнения.

Алгоритм Брезенхема

Алгоритм Брезенхема выбирает оптимальные растровые координаты для представления отрезка. В процессе работы одна из координат - либо x, либо у (в зависимости от углового коэффициента) - изменяется на единицу. Изменение другой координаты (либо на нуль, либо на единицу) зависит от расстояния между действительным положением отрезка и ближайшими координатами сетки. Такое расстояние называется ошибкой.

Алгоритм построен так, что требуется проверять лишь знак этой ошибки. На рис.2.1 это иллюстрируется для отрезка в первом


½  y  1 (ошибка  0)

0  y/x < ½ (ошибка <0)

Инициировать ошибку в – ½

ошибка = ошибка + y/x

2.1 Основная идея алгоритма Брезенхема


октанте, т. е. для отрезка с угловым коэффициентом, лежащим в диапазоне от нуля до единицы. Из рисунка можно заметить, что если угловой коэффициент отрезка из точки (0,0) больше чем 1/2, то его пересечение с прямой x = 1 будет расположено ближе к прямой у = 1, чем к прямой у = 0. Следовательно, точка растра (1,1) лучше аппроксимирует ход отрезка, чем точка (1,0). Если угловой коэффициент меньше 1/2, то верно обратное. Для углового коэффициента равного 1/2 нет какого-либо предпочтительного выбора. В данном случае алгоритм выбирает точку (1,1).

Быстродействие алгоритма можно существенно увеличить, если использовать только целочисленную арифметику и исключить деление. Т.к. важен лишь знак ошибки, то приняв

можно добиться хорошей скорости выполнения алгоритма.


2.2 Разбор случаев для обобщённого алгоритма Брезенхема.


Чтобы реализация алгоритма была полной необходимо обрабатывать отрезки во всех октантах. Когда абсолютная величина углового коэффициента больше 1, y постоянно изменяется на единицу, а критерий ошибки Брезенхема используется для принятия решения об изменении величены x. Выбор постоянно изменяющейся (на +1 или –1) координаты зависит от квадранта (рис. 2.2).

Алгоритм Брезенхема может быть оформлен в следующем виде.


Обобщённый целочисленный алгоритм Брезенхема квадрантов


предполагается, что концы отрезка (x1,y1) и (x2,y2) не совпадают и все переменные  целые.

Функция Sign возвращает  1, 0, 1 для отрицательного нулевого и положительного аргумента соответственно.


инициализация переменных

x = x1

y = y1

x = abs ( x2  x1 )

y = abs ( y2  y1 )

s1 = Sign ( x2  x1 )

s2 = Sign ( y2  y1 )

обмен значение x и y в зависимости от углового коэффициента наклона отрезка

if y > x then

Врем = x

x = y

y = Врем

Обмен = 1

else

Обмен = 0

end if

инициализация с поправкой на половину пиксела

= 2 * y  x

основной цикл

for i = 1 to x

Plot ( x ,y )

While (  0 )

If Обмен = 1 then

x = x + s1

else

y = y + s2

end if

=  2 * x

end while

if Обмен = 1 then

y = y + s2

else

x = x + s1

end if

= + 2 * y

next i

finish

Этот алгоритм удовлетворяет самым строгим требованиям. Он имеет приемлемую скорость и может быть легко реализован на аппаратном или микропрограммном уровне.

Алгоритм Брезенхема для генерации окружностей

В растр нужно разлагать не только линейные, но и другие, более сложные функции. Разложению конических сечений, т. е. окружностей, эллипсов, парабол, гипербол посвящено значительное число работ. Наибольшее внимание, разумеется, уделено окружности. Один из наиболее эффективных и простых для понимания алгоритмов генерации окружности принадлежит






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.