Пополнение знаний интеллектуальных систем на основе казуально-зависимых рассуждений (4142-1)

Посмотреть архив целиком

Пополнение знаний интеллектуальных систем на основе казуально-зависимых рассуждений

Л.С. Берштейн, В.Б. Мелехин

1. Введение

Важным свойством интеллектуальных систем (ИС) является способность к целенаправленному функционированию в недоопределенных проблемных средах (ПС).Для этого система должна обладать возможностью пополнения знаний,позволяющей устанавливать недостающие для принятия решений факты.

На современном этапе развития ИС наибольшее распространение получили следующие способы пополнения знаний: использование сетевых моделей в виде сценариев и применение различных псевдофизических логик{1}. Ограничения на использование первого способа пополнения знаний для ИС активно взаимодействующих с ПС накладывает громоздкость заранее заданных сценариев, требующая большого объема памяти для их хранения. Организация процесса пополнения знаний на основе известных псевдофизических логик затруднена из-за немонотонности вывода умозаключений в произвольной предметной области, приводящей к правдоподобности выявленных фактов, а автономно функционирующие ИС обычно требуют однозначного ответа на вопрос об истинности выводимых фактов.

В работе рассматривается один из возможных путей обхода вышеотмеченных трудностей пополнения знаний ИС, активно взаимодействующих с СП , связанный с применением псевдофизической логики казуально-зависимых предикатов и правил означивания их переменных в процессе вывода умозаключений [ 2 ]. Особенность казуально-зависимых предикатов заключается в том, что в них на предикатные переменные накладываются причинно-следственные ограничения, которые позволяют выделять монотонные участки вывода истинных умозаключений в произвольной области их определения.

2. Казуально-зависимые предикатные переменные и их свойства

Казуально-зависимой предикатной переменной называется пара A(Fa)=(Ca,Fa),где Ca -название или идентификатор переменной: Fa -множество условий принадлежности или требования, которым должны удовлетворять объекты ПС, относящиеся к переменной A(Fa).

В свою очередь, каждый объект ai(Xi) произвольной ПС может определяться множеством характеристик Xi,i=1,n . Тогда пишем, что ai(Xi)A(Fa) ,если Fa  Xi, в противном случае пишем, что ai(Xi)A(Fa).

Если для двух казуально-зависимых переменных A(Fa) и B(Fb) выполняется условие Fb  Fa , то B(Fb) называется покрытием A(Fa) и обозначается A(Fa) B(Fb). Иными словами, все объекты, относящиеся к A(Fa), являются объектами переменной B(Fb). Из сказанного вытекает, что чем шире множество условий и признаков принадлежности, тем меньшее количество объектов ПС может удовлетворить этим условиям, а следовательно, и относиться к соответствующей переменной.

Расширением и сужением казуально-зависимой переменной A(Fa) по признакам принадлежности Fr называются переменные, соответственно, образованные из A(Fa) при помощи присоединения множества Fr к Fa и удаления множества Fr из множества Fa.

Рассмотрим теоретико-множественные операции над казуально-зависимыми переменными, которые могут быть использованы для образования новых переменных на основе исходно-заданных.Пусть переменная A(Fa) определена на элементах базового множества А. Тогда, дополнением A(Fa) к базовому множеству А называется и обозначается переменная A(Fa), элементы ai(Xi) которой не удовлетворяют требованиям Fa, т.е. элементы из А, для которых Fa Xi . Пересечением переменных A(Fa)=(Ca,Fa) и B(Fb)=(Cb,Fb) называется и обозначается переменная D(Fd)=(Cd,Fd) равная D(Fd)=A(Fa) B(Fb), для которой имя Cd = Ca  Cb определяется объединением имен исходных переменных связкой ”и”, а условия принадлежности Fd= Fa  Fb . Другими словами, переменная D(Fd) включает те и только те объекты из A(Fa) и B(Fb),которые одновременно удовлетворяют требованиям Fa и Fb . Например, пусть A(Fa)- казуально-зависимая переменная с названием ”острые объекты”, а переменная B(Fb) -”длинные объекты” , тогда переменная D(Fd)=A(Fa) B(Fb) является переменной с названием ”длинные и острые объекты”. Объединением переменных A(Fa) и B(Fb) называется и обозначается переменная P(Fp)=A(Fa) B(Fb), для которой

Fp=

Fa  Fb,если Fa  Fb  ;

Fa  Fb ,если Fa  Fb = ,

где запись FaFb означает, что множество условий принадлежности Fp=Fa Fb cостоит из двух независимых подмножеств Fa и Fb и произвольный объект ПС является элементом переменной P(Fb), если он удовлетворяет требованиям хотя бы одного из множеств Fa или Fb. Название Cp переменной P(Fp) образуется из названий Ca и Cb при помощи связки ”или”,например,”длинные или острые объекты”. Пусть казуально-зависимая переменная A(Fa) образуется согласно условию, что все ее объекты должны обладать некоторым свойством, например, обладать умением летать, определяющим ее название - ”летательные аппараты”. При этом, множество условий принадлежности Fa фактически является множеством причин и сопричин, влекущих за собой выполнимость условия ”ai(Xi) F(Fa),если Fa Xi”. Для немонотонной изменяющейся во времени области А множество условий принадлежности Fa можно разбить на два подмножества:Fa1 - абсолютные причинно-следственные ограничения, определяющие объекты переменной независимо от условий ПС и Fa2 -относительные ограничения, т.е. появляющиеся причинно-следственные ограничения или ”тормозные сигналы”, нарушающие условия принадлежности ai(Xi) к A(Fa),определяемые множеством абсолютных ограничений. Например, все аппараты, имеющие крылья и мощный тяговый двигатель, обладают способностью летать. Однако, при появлении тормозного фактора - ”наличие повреждений” -все аппараты A(Fa1) теряют способность летать. Таким образом, условия принадлежности объектов ai(Xi) к множеству A(Fa) будут определяться следующим образом (Fa1  Xi) (Fa2  Xi= ). Казуально-зависимая переменная называется замкнутой и обозначается A(Fa*). если Fa* = Fa1*  Fa2* является множеством необходимых и достаточных причин и сопричин, выполнение которых влечет за собой общезначимость условий принадлежности ai(Xi)A(Fa*), если (Fa1*  Xi)(Fa2*  Xi = ).

3. Казуально-зависимые предикаты и правила их использования для пополнения знаний

Используя казуально-зависимые переменные в качестве предикатных переменных можно определить следующие казуально-зависимые предикаты.

Определение1.Предикатная формула M(A(Fa 1* ), kj), связанная с выявлением kj свойства оъектов ПС называется казуально-зависимым предикатом, если ее предикатная переменная определена казуально-зависимой переменно А(F1*), образованной на основе причинно-следственных ограничений Fa1* свойства kj и она принимает истинное значение только в том случае, если подставляемые в нее предметные переменные и константы удовлетворяют требованиям Fa1*.

Определение2.Казуально-зависимая предикатная формула N(A(Fa2*),kj), связанная с выявлением kj свойства объектов ПС называется казуально-зависимым предикатным дополнением, если подставляемые в нее объектные переменные и константы удовлетворяют требованиям Fa2* относительных причинно-следственных ограничений Fa2* переменной A(Fa*).

Определение3.Казуально-зависимый предикат M(A(Fa1*),kj),образует причинно-следственное продолжение с дополнением N(A(Fa2*),kj),которое обозначается E(kj):N(A(Fa2*),kj) M(A(Fa1*),kj) и принимает истинное значение только для тех предикатных переменных и констант, для которых формулы N(A(Fa2*),kj) и M(A(Fa1*),kj) являются одновременно истинными.

Утверждение 1. Причинно-следственное продолжение Ej является общезначимым для всех объектов ПС, удовлетворяющих требованиям казуально-зависимой предикатной переменной A(Fa), если образующее ее множество является замкнутым Fa*.

Доказательство. Справедливость утверждения вытекает из условия необходимости и достаточности причин и сопричин Fa*, влекущих за собой общезначимость следствия

(aj(Xj)A(Fa*)) [E(kj)].

Если множество условий принадлежности Fa является открытым, то причинно-следственное подолжение E(kj), образованное его основе, является только выполнимым.

Очевидно, что открытое множество Fa должно пополняться и корректироваться по мере приобретения ИС новых знаний. Корректировка составляющей Fa2* открытого множества Fa может осуществляться на основе процедур самообучения подробно изложенных в [3].

Утверждение 2. Совокупность формул R={ E(kj)}, j=1,m и правила их означивания образуют монотонную логику вывода умозаключений для произвольной предметной области A, если все образующие эти формулы множества причин и сопричин являются замкнутыми Fa*.

Доказательства. Из условия общезначимости формул

(aj(Xj)A(Fa*))[E(kj)]

следует, что каждая казуально-зависимая переменная A(Fa*),j=1,m при замкнутом множестве Fa* образует монотонную область вывода умозаключений, связанных с подтверждением выполнимости свойства kj для всех объектов aj(Xj) из А при условии, что они удовлетворяют требованиям Fa*.

Следовательно, все j правила из совокупности R* сопряжены с соответствующей им областью монотонного вывода умозаключений Aj(Fa*) A, а это с очевидностью подтверждает справедливость утверждения 2.

Таким образом, при определении знаний ИС при помощи совокупности импликативных решающих правил R* и условий их означивания система приобретает возможность пополнения недостающих для принятия решений фактов на основе вывода истинных умозаключений в произвольной немонотонной предметной области.

Рассмотрим пример. Пусть задано базовое множество А-”живые существа” и свойство kj-”умение летать”. Тогда область определения казуально-зависимой переменной A(Fa1*) будет задаваться множеством всех живых существ, имеющих развитые крылья, а казуально-зависимой переменной A(Fa2*)- множеством всех живых существ, у которых отсутствуют повреждения. Таким образом, на основе правил вывода


Случайные файлы

Файл
12163.rtf
54190.doc
21869.doc
8356.rtf
73359.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.